## Detection and characterization at nM concentration of oligomers formed by hIAPP, Ab(1–40) and their equimolar mixture using SERS and MD simulations.

Luisa D'Urso,<sup>a</sup> Marcello Condorelli,<sup>a</sup> Orazio Puglisi,<sup>a</sup> Carmelo Tempra,<sup>a</sup> Fabio Lolicato,<sup>b,c</sup> Giuseppe Compagnini,<sup>a</sup> and Carmelo La Rosa<sup>a,\*</sup>

<sup>&</sup>lt;sup>a.</sup> Department of Chemical Sciences, V.le A. Doria 6 -95125 Catania, Italy. Email:clarosa@unict.it

<sup>&</sup>lt;sup>b</sup>. Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.

<sup>&</sup>lt;sup>c</sup> Laboratory of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland



Figure S1. Secondary structures evolution over 1  $\mu$ s of atomistic simulation of first run of A $\beta$  (1-40) and hIAPP tetramer molar ratio 1:1. Residue from 1 to 80 indicate the A $\beta$  (1-40), the residue from 81 to 154 indicate the hIAPP residue.



Coil 📕 B-Sheet 📕 B-Bridge 🔤 Bend 🔁 Turn 🔤 A-Helix 📑 5-Helix 🔄 3-Helix 🗋 Chain\_Separator

Figure S2. Secondary structures evolution over 1  $\mu$ s of atomistic simulation of second run of A $\beta$  (1-40) and hIAPP tetramer molar ratio 1:1. Residue from 1 to 80 indicate the A $\beta$  (1-40), the residue from 81 to 154 indicate the hIAPP residue.



🗌 Coil 📕 B-Sheet 📕 B-Bridge 📕 Bend 🦳 Turn 📕 A-Helix 📕 5-Helix 🛄 3-Helix 🔲 Chain\_Separator

Figure S3. Secondary structures evolution over 1  $\mu$ s of atomistic simulation of third run of A $\beta$  (1-40) and hIAPP tetramer molar ratio 1:1. Residue from 1 to 80 indicate the A $\beta$  (1-40), the residue from 81 to 154 indicate the hIAPP residue.



Fig S4. SERS spectra of equimolar mixture of A $\beta$  (1-40) and hIAPP at 10nM concentration. Panel in the right corner is the magnification of the amide II bands. The  $\beta$ -sheet/random coil ratio was calculated from the ratio between the intensity at 1568 cm<sup>-1</sup>( $\beta$ -sheet) and intensity at 1561 cm<sup>-1</sup> (random coil).