1 Electronic Supplementary Information

- 2 Competition kinetics of OH radical reactions with oxygenated organic
- 3 compounds in aqueous solution: Rate constants and internal optical
- 4 absorption effects
- 5

6 T. Schaefer and H. Herrmann

- 7 Leibniz-Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD),
- 8 Permoserstraße 15, 04318 Leipzig, Germany

10 2-Propanone (Acetone)

11

12Figure ESM-1:The UV spectrum of 2-propanone as plot of the molar absorptivity ε against the wavelength in13neutral aqueous solution.

14

15 In Figure ESM-1 the UV spectrum of 2-propanone is shown. The molar absorptivity ε of acetone can be given with

 $16 \epsilon_{248 \text{ nm}}$ = 11.5 L mol⁻¹ cm⁻¹. This data set is shown in Table 3 in the manuscript and was used to obtain the

17 Arrhenius-Plot displayed in Figure ESM-2.

- 19 Figure ESM-2: Arrhenius plot of the OH radical reaction with 2-propanone considering the internal UV light
- 20 21
- absorption (data taken from Ervens et al. (2003)¹).
- 22

23 1-Hydroxypropan-2-one (Hydroxyacetone, Acetol)

25Figure ESM-3:The UV spectrum of 1-hydroxypropan-2-one as plot of the molar absorptivity ε against the
wavelength in neutral aqueous solution.27

- The UV spectrum of the reactant 1-hydroxypropan-2-one is shown in Figure ESM-3. The molar absorptivity was
- determined with $\epsilon_{\rm 248\,nm}$ = 11.4 L mol^-1 cm^-1 in neutral aqueous solution.

- 32 Figure ESM-4:

UV light absorption.

- .

Temperature / K	k _{not corrected} / L mol ⁻¹ s ⁻¹	k _{corrected} ∕ L mol⁻¹ s⁻¹	relative change /%
288	$(9.94 \pm 0.43) \cdot 10^8$	$(9.47 \pm 0.47) \cdot 10^8$	4.7
298	$(1.12 \pm 0.07) \cdot 10^9$	$(1.08 \pm 0.07) \cdot 10^9$	3.6
308	$(1.27 \pm 0.08) \cdot 10^9$	$(1.23 \pm 0.08) \cdot 10^9$	3.1
318	$(1.29 \pm 0.31) \cdot 10^9$	$(1.22 \pm 0.29) \cdot 10^9$	5.7
328	$(1.73 \pm 0.61) \cdot 10^9$	$(1.64 \pm 0.64) \cdot 10^9$	5.2

Table ESM 1:Calculated rate constants without and with considering the internal UV absorption by
the reactant 1-hydroxy-propan-2-one.

40 1,3-Dihydroxypropan-2-one (Dihydroxyacetone)

42 Figure ESM-5: The UV spectrum of 1,3-dihydroxypropan-2-one as plot of the molar absorptivity ε against the wavelength in neutral aqueous solution.
 44

- 45 The UV spectrum of the reactant 1,3-dihydroxypropan-2-one is displayed in Figure ESM-5. The molar absorptivity
- was determined with $\epsilon_{248 \text{ nm}}$ = 7.7 L mol⁻¹ cm⁻¹ in neutral aqueous solution.

Table ESM 2: Calculated rate constants without and with considering the internal UV absorption of the reactant 1,3-dihydroxypropan-2-one.

Temperature / K	k _{not corrected} / L mol ⁻¹ s ⁻¹	k _{corrected} / L mol ⁻¹ s ⁻¹	relative change /%
278	$(1.20 \pm 0.57) \cdot 10^9$	(1.14 ± 0.57) · 10 ⁹	5.0
288	$(1.31 \pm 0.09) \cdot 10^9$	$(1.25 \pm 0.07) \cdot 10^9$	4.6
298	$(1.57 \pm 0.13) \cdot 10^9$	$(1.50 \pm 0.11) \cdot 10^9$	4.5
308	$(2.01 \pm 0.16) \cdot 10^9$	$(1.92 \pm 0.14) \cdot 10^9$	4.5
318	$(2.26 \pm 0.21) \cdot 10^9$	$(2.16 \pm 0.17) \cdot 10^9$	4.4

53 Fi

Figure ESM-6: Arrhenius plot of the OH radical reaction with 1,3-dihydroxypropan-2-one considering the internal UV light absorption.

55

54

56

57 2,3-Dihydroxypropanal (Glyceraldehyde)

59 Figure ESM-7:The UV spectrum of 2,3-dihydroxypropanal as plot of the molar absorptivity ε against the60wavelength in neutral aqueous solution, data taken from Berndt (1954)².

61

62 The UV spectrum of the reactant 2,3-dihydroxypropanal is displayed in Figure ESM-7. The molar absorptivity was 63 determined with $\varepsilon_{248 \text{ nm}} = 1.4 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$ by Berndt (1954)² in neutral aqueous solution. The measurement 64 conditions of the rate constant determination of the OH radical reaction with 2,3-dihydroxypropanal are given 65 in table ESM-3.

Experiment	H ₂ O ₂ / L mol ⁻¹	KSCN / L mol ⁻¹	Reactant / L mol ⁻¹	[OH]₀ change /%
I	2.0.10-4	2.2·10 ⁻⁵	0	0
II	2.0.10-4	2.2·10 ⁻⁵	1.02.10-4	0.06
111	2.0.10-4	2.2·10 ⁻⁵	2.04·10 ⁻⁴	0.11
IV	2.0.10-4	2.2·10 ⁻⁵	3.07·10 ⁻⁴	0.17
V	2.0·10 ⁻⁴	2.2·10 ⁻⁵	4.09·10 ⁻⁴	0.23

Table ESM-3: Used concentrations for the measurement of the reactant 2,3-dihydroxypropanal.

69 The rate constants of the OH radical reaction with the reactant 2,3-dihydroxypropanal is not influenced by the

70 internal UV absorption, shown in Table ESM-4. The Arrhenius-Plot of this reaction is displayed in Figure ESM-8.

Table ESM-4: Calculated rate constants without and with considering the internal UV absorption of the reactant 2,3-dihydroxypropanal.

Temperature / K	k _{not corrected} / L mol ⁻¹ s ⁻¹	k _{corrected} / L mol ⁻¹ s ⁻¹	relative change / %
278	$(1.04 \pm 0.03) \cdot 10^9$	$(1.04 \pm 0.03) \cdot 10^9$	0.0
288	$(1.17 \pm 0.05) \cdot 10^9$	$(1.17 \pm 0.05) \cdot 10^9$	0.0
298	$(1.31 \pm 0.03) \cdot 10^9$	$(1.31 \pm 0.03) \cdot 10^9$	0.0
308	$(1.58 \pm 0.03) \cdot 10^9$	$(1.58 \pm 0.04) \cdot 10^9$	0.0
318	$(1.74 \pm 0.01) \cdot 10^9$	$(1.74 \pm 0.01) \cdot 10^9$	0.0

76 Figure ESM-8: Arrhenius plot of the OH radical reaction with 2,3-dihydroxypropanal considering the internal
77 UV light absorption.

78 Butane-1,3-diol

80Figure ESM-9:The UV spectrum of butane-1,3-diol as plot of the molar absorptivity ε against the wavelength in81neutral aqueous solution.

82

79

83 For butane-1,3-diol as reactant the obtained UV spectrum is shown in Figure ESM-10. The molar absorptivity was

84 determined with $\epsilon_{248 \text{ nm}} = 0.11 \text{ L mol}^{-1} \text{ cm}^{-1}$ by in neutral aqueous solution. The used measurement conditions of

85 the reactant butane-1,3-diol are given in Table ESM-5.

86

87 **Table ESM-5:** Used concentrations for the measurement of the reactant butane-1,3-diol.

Experiment	H ₂ O ₂ / L mol ⁻¹	KSCN / L mol ⁻¹	Reactant / L mol ⁻¹	[OH]₀ change /%
I	2.0.10-4	2.0·10 ⁻⁵	0	0
II	2.0.10-4	2.0·10 ⁻⁵	2.0.10-4	0.009
III	2.0.10-4	2.0·10 ⁻⁵	4.0·10 ⁻⁴	0.017
IV	2.0.10-4	2.0·10 ⁻⁵	6.0·10 ⁻⁴	0.026
V	2.0.10-4	2.0·10 ⁻⁵	8.0.10-4	0.035

- 89 The rate constants of the OH radical reaction with the reactant butane-1,3-diol are not influenced by the internal
- 90 UV absorption, shown in Table ESM-6. The Arrhenius-Plot of this reaction is given in Figure ESM-10.
- 91

92	Table ESM-6:	Calculated rate constants without and with considering the internal UV absorption of the
93		reactant butane-1,3-diol.

Temperature / K	k _{not corrected} ∕ L mol ⁻¹ s ⁻¹	k _{corrected} / L mol ⁻¹ s ⁻¹	relative change / %
278	$(1.68 \pm 0.03) \cdot 10^9$	$(1.68 \pm 0.03) \cdot 10^9$	0.0
288	(2.04 ± 0.03) · 10 ⁹	$(2.04 \pm 0.03) \cdot 10^9$	0.0
298	(2.50 ± 0.09) · 10 ⁹	$(2.50 \pm 0.09) \cdot 10^9$	0.0
308	(2.66 ± 0.09) · 10 ⁹	(2.66 ± 0.10) · 10 ⁹	0.0
318	$(2.90 \pm 0.08) \cdot 10^9$	$(2.90 \pm 0.08) \cdot 10^9$	0.0

Butane-2,3-diol

1				Sec. Sec.
	2019/ 90 .01977-2-2019/10206-2019		al martinen ut mar call means direction and had	ineren Borrichtenen

Figure ESM-11: The UV spectrum of butane-2,3-diol as plot of the molar absorptivity ε against the wavelength in neutral aqueous solution.

Butane-2,3-diol has only a very small molar absorptivity, with $\epsilon_{248\,nm}$ = 0.11 L mol⁻¹ cm⁻¹ in neutral aqueous

solution. The internal filter of the excitation UV light is negligible. To study the reaction of the OH radicals with

- reactant butane-2,3-diol the following measurement conditions have been used (Table ESM 7).

Experiment	H ₂ O ₂ / L mol ⁻¹	KSCN / L mol ⁻¹	Reactant / L mol ⁻¹	[OH]₀ change /%
I	2.0.10-4	2.0·10 ⁻⁵	0	0
II	2.0.10-4	2.0·10 ⁻⁵	2.0.10-4	0.009
	2.0.10-4	2.0·10 ⁻⁵	4.0.10-4	0.017
IV	2.0.10-4	2.0·10 ⁻⁵	6.0·10 ⁻⁴	0.026
V	2.0·10 ⁻⁴	2.0·10 ⁻⁵	8.0·10 ⁻⁴	0.035

Table ESM-7: Used concentrations for the measurement of the reactant butane-2,3-diol.

For butane-2,3-diol as reactant the obtained rate constants of the OH radical reaction are not influenced by an

112 internal UV absorption (Table ESM-8). The Arrhenius-Plot of this reaction is given in Figure ESM-12.

Table ESM-8:Calculated rate constants without and with considering the internal UV absorption of the115reactant butane-2,3-diol.

Temperature / K	k _{not corrected} / L mol ⁻¹ s ⁻¹	k _{corrected} / L mol ⁻¹ s ⁻¹	relative change / %
278	$(1.39 \pm 0.03) \cdot 10^9$	$(1.39 \pm 0.03) \cdot 10^9$	0.0
288	(1.73 ± 0.04) · 10 ⁹	$(1.73 \pm 0.04) \cdot 10^9$	0.0
298	(1.99 ± 0.02) · 10 ⁹	$(1.99 \pm 0.02) \cdot 10^9$	0.0
308	$(2.20 \pm 0.04) \cdot 10^9$	$(2.20 \pm 0.04) \cdot 10^9$	0.0
318	(2.45 ± 0.04) · 10 ⁹	$(2.44 \pm 0.04) \cdot 10^9$	0.0

Figure ESM-12: Arrhenius plot of the OH radical reaction with butane-2,3-diol.

122 Figure ESM-13: The UV spectrum of hexane-1,2-diol as plot of the molar absorptivity ε against the wavelength123 in neutral aqueous solution.

124

125 Diols have a very small molar absorptivity at λ = 248 nm $\epsilon_{248 \text{ nm}}$ = 0.34 L mol⁻¹ cm⁻¹ in neutral aqueous solution,

126 due to this the internal filter of the excitation UV light is negligible. The following measurement conditions have

- 127 been used (Table ESM-9).
- 128
- 129 **Table ESM-9:** Used concentrations for the measurement of the reactant hexane-1,2-diol.

Experiment	H ₂ O ₂ / L mol ⁻¹	KSCN / L mol ⁻¹	Reactant / L mol ⁻¹	[OH]₀ change /%
I	2.0.10-4	1.78·10 ⁻⁵	0	0
II	2.0.10-4	1.78·10 ⁻⁵	5.0·10 ⁻⁵	0.053
III	2.0.10-4	1.78·10 ⁻⁵	1.0.10-4	0.107
IV	2.0.10-4	1.78·10 ⁻⁵	1.5.10-4	0.160
V	2.0.10-4	1.78·10 ⁻⁵	2.0.10-4	0.213

130

131 The obtained rate constants of the OH radical reaction are also not influenced by an internal UV absorption (Table

132 ESM-10), like in the case of butane-1,3-diol and butane-2,3-diol. The obtained Arrhenius-Plot is given in Figure

- 133 ESM-14.
- 134

135 **Table ESM-10:** Calculated rate constants of the OH radical reaction with the reactant hexane-1,2-diol.

Temperature / K	k _{not corrected} / L mol ⁻¹ s ⁻¹	k _{corrected} / L mol ⁻¹ s ⁻¹	relative change / %
278	(3.36 ± 0.09) · 10 ⁹	(3.35 ± 0.09) · 10 ⁹	0.3
288	(4.23 ± 0.21) · 10 ⁹	(4.22 ± 0.20) · 10 ⁹	0.2
298	(4.60± 0.41) · 10 ⁹	(4.59± 0.41) · 10 ⁹	0.2
308	(5.49 ± 0.48) · 10 ⁹	$(5.48 \pm 0.48) \cdot 10^9$	0.2
318	(7.47 ± 1.18) · 10 ⁹	(7.45 ± 1.17) · 10 ⁹	0.3

138 Figure ESM-14: Arrhenius plot of the rate constants of the OH radical reaction with

139

140

141

142 References (Electronic Supplementary Information)

hexane-1,2-diol

143

- 144 1. B. Ervens, S. Gligorovski and H. Herrmann, *Physical Chemistry Chemical Physics*, 2003, 5, 1811-1824.
- 145 2. W. Berndt, *Monatshefte der Chemie*, 1954, 85, 387-392.