## **Electronic Supplement**

## Oxidation of substituted aromatic hydrocarbons in the tropospheric aqueous phase: Kinetic mechanism development and modelling

Erik H. Hoffmann, Andreas Tilgner, Ralf Wolke, Olaf Böge, Arno Walter, and Hartmut Herrmann

Corresponding author: herrmann@tropos.de

| Species                   | K                                         | Ref.                             | α      | Ref.                     | $D_g / 10^6 m^2 s^{-1}$ | Ref.                       |
|---------------------------|-------------------------------------------|----------------------------------|--------|--------------------------|-------------------------|----------------------------|
| Phenol                    | $6.47 \cdot 10^2 e^{(7684*(1/T-1/298))}$  | Feigenbrugel et al. <sup>1</sup> | 0.027  | Heal et al. <sup>2</sup> | 8.5                     | Fuller et al. <sup>3</sup> |
| Catechol                  | 8.31·10 <sup>5</sup>                      | Sander <sup>4</sup>              | 0.1    | est.                     | 8.2                     | Fuller et al. <sup>3</sup> |
| Cresol                    | $4.24 \cdot 10^2 e^{(8544*(1/T-1/298))}$  | Feigenbrugel et al. 1            | 0.027  | Lahoutifard et al. 5     | 7.7                     | Fuller et al. <sup>3</sup> |
| Methylcatechol            | $5.45 \cdot 10^5$                         | est. ratio phenol/catechol       | 0.1    | est.                     | 7.5                     | Fuller et al. <sup>3</sup> |
| Benzyl alcohol            | $3.11 \cdot 10^3$                         | Altschuh et al. <sup>6</sup>     | 0.1    | est.                     | 7.7                     | Fuller et al. <sup>3</sup> |
| Benzaldehyde              | $3.31 \cdot 10^1 e^{(6258*(1/T-1/298))}$  | Allou et al. <sup>7</sup>        | 0.1    | est.                     | 7.9                     | Fuller et al. <sup>3</sup> |
| Benzoic acid              | 2.94·10 <sup>4</sup>                      | Li et al. <sup>8</sup>           | 0.1    | est.                     | 7.6                     | Fuller et al. <sup>3</sup> |
| 2-Nitrophenol             | $1.47{\cdot}10^2 e^{(5720*(1/T-1/298))}$  | Guo and Brimblecombe 9           | 0.0033 | Leyssens et al. 10       | 7.7                     | Fuller et al. <sup>3</sup> |
| 4-Nitrophenol             | $2.13 \cdot 10^4$                         | Guo and Brimblecombe 9           | 0.1    | est.                     | 7.7                     | Fuller et al. <sup>3</sup> |
| 6-Methyl-2-Nitrophenol    | $2.98 \cdot 10^{1}$                       | Tremp et al. <sup>11</sup>       | 0.1    | est.                     | 7.1                     | Fuller et al. <sup>3</sup> |
| 1,4-Benzoquinone          | $5.27 \cdot 10^5$                         | est. same as MBQ                 | 0.1    | est.                     | 7.7                     | Fuller et al. <sup>3</sup> |
| 2-Methyl-1,4-benzoquinone | $5.27 \cdot 10^{5}$                       | Sander <sup>4</sup>              | 0.1    | est.                     | 7.1                     | Fuller et al. <sup>3</sup> |
| Dinitrophenol             | $1.16 \cdot 10^4$                         | Tremp et al. <sup>11</sup>       | 0.1    | est.                     | 7.2                     | Fuller et al. <sup>3</sup> |
| Dinitrocresol             | $4.41 \cdot 10^{3}$                       | Tremp et al. <sup>11</sup>       | 0.1    | est.                     | 6.7                     | Fuller et al. <sup>3</sup> |
| 4-Nitrocatechol           | $2.70 \cdot 10^{7}$                       | est. ratio phenol/4-nitrophenol  | 0.1    | est.                     | 7.5                     | Fuller et al. <sup>3</sup> |
| Nitromethylcatechol       | $3.83 \cdot 10^4$                         | est. ratio cresol/2-nitrocresol  | 0.1    | est.                     | 6.9                     | Fuller et al. <sup>3</sup> |
| 2-Chlorophenol            | $3.64 \cdot 10^2 e^{(5700*(1/T-1/298))}$  | Sander <sup>4</sup>              | 0.1    | est.                     | 7.7                     | Fuller et al. <sup>3</sup> |
| 4-Chlorophenol            | $1.42 \cdot 10^2 e^{(11000*(1/T-1/298))}$ | Sander <sup>4</sup>              | 0.1    | est.                     | 7.7                     | Fuller et al. <sup>3</sup> |
| 2,4-Dichlorophenol        | $6.69 \cdot 10^2 e^{(6800*(1/T-1/298))}$  | Sander <sup>4</sup>              | 0.1    | est.                     | 7.1                     | Fuller et al. <sup>3</sup> |
| 2,6-Dichlorophenol        | $3.75 \cdot 10^2$                         | Sander <sup>4</sup>              | 0.1    | est.                     | 7.1                     | Fuller et al. <sup>3</sup> |
| 2,4,6-Trichlorophenol     | $2.03 \cdot 10^2$                         | Sander <sup>4</sup>              | 0.1    | est.                     | 6.6                     | Fuller et al. <sup>3</sup> |
| 2-Bromophenol             | $4.56 \cdot 10^{3}$                       | Sander <sup>4</sup>              | 0.1    | est.                     | 8.1                     | Fuller et al. <sup>3</sup> |
| 4-Bromophenol             | 6.79·10 <sup>3</sup>                      | Sander <sup>4</sup>              | 0.1    | est.                     | 8.1                     | Fuller et al. <sup>3</sup> |
| 2,4-Dibromophenol         | $1.11 \cdot 10^4$                         | Sander <sup>4</sup>              | 0.1    | est.                     | 8.0                     | Fuller et al. <sup>3</sup> |
| 2,6-Dibromophenol         | $1.11 \cdot 10^4$                         | Sander <sup>4</sup>              | 0.1    | est.                     | 8.0                     | Fuller et al. <sup>3</sup> |
| 2,4,6-Tribromophenol      | $2.13 \cdot 10^4$                         | Sander <sup>4</sup>              | 0.1    | est.                     | 8.0                     | Fuller et al. <sup>3</sup> |
| 4-Bromo-2-nitrophenol     | $7.90 \cdot 10^{1}$                       | est. 4-Chloro-2-nitrophenol      | 0.1    | est.                     | 6.7                     | Fuller et al. <sup>3</sup> |
| 2-Chlorobenzoic acid      | 2.53.104                                  | Sander <sup>4</sup>              | 0.1    | est.                     | 7.0                     | Fuller et al. <sup>3</sup> |

## Table S1 Phase transfer data of CAPRAM-AM1.0.

|    | Reaction                                                                                                                                                                                                      | K                     | Ref.                                    | k <sub>f,298</sub>    | k <sub>b,298</sub>   | Ref.                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|-----------------------|----------------------|-------------------------------|
| 1  | $C_6H_5OH \Longrightarrow C_6H_5O^-$                                                                                                                                                                          | 1.0.10-10             | Lahoutifard et al. <sup>5</sup>         | $5.0.10^{0}$          | 5.0·10 <sup>10</sup> | est.                          |
| 2  | $C_6H_5OH^+ \rightleftharpoons C_6H_5O + H^+$                                                                                                                                                                 | $1.0.10^{+2}$         | Dixon and Murphy <sup>12</sup>          | 5.0·10 <sup>12</sup>  | 5.0·10 <sup>10</sup> | est.                          |
| 3  | $C_6H_5OH^+ + H_2O \Longrightarrow PHENHCHD + H^+$                                                                                                                                                            | 4.0.10-2              | lower limit Sehested and                | 2.0.107               | 5.0·10 <sup>8</sup>  | Sehested et al. 14            |
|    |                                                                                                                                                                                                               |                       | Holeman <sup>13</sup>                   |                       |                      |                               |
| 4  | $Fe^{3+} + C_6H_5OH \Longrightarrow FeC_6H_5O^{2+} + H^+$                                                                                                                                                     | 1.67.10-2             | Milburn <sup>15</sup>                   | $1.00.10^{0}$         | $1.67 \cdot 10^2$    | Nakamura et al. <sup>16</sup> |
| 5  | $FeOH^{2+} + 1,2-C_6H_4(OH)_2 \Longrightarrow FeC_6H_4O_2^+ + H^+$                                                                                                                                            | 4.35·10 <sup>-2</sup> | Mentasti and Pelizzetti 17              | 3.1·10 <sup>3</sup>   | 7.13·10 <sup>4</sup> |                               |
| 6  | $C_7H_7OH \Longrightarrow C_7H_7O^-$                                                                                                                                                                          | 7.4·10 <sup>-11</sup> | Lahoutifard et al. <sup>5</sup>         | $3.7 \cdot 10^{0}$    | 5.0·10 <sup>10</sup> | est.                          |
| 7  | $C_7H_7OH^+ = C_7H_7O + H^+$                                                                                                                                                                                  | $6.31 \cdot 10^{+1}$  | Dixon and Murphy <sup>12</sup>          | 2.0·10 <sup>5</sup>   | 3.17·10 <sup>3</sup> | Choure et al. 18              |
| 8  | $C_7H_7OH^+ + H_2O = CRESCHD + H^+$                                                                                                                                                                           | 4.0.10-2              | lower limit Sehested and                | 2.0.107               | 5.0·10 <sup>8</sup>  | Sehested et al. 14            |
|    |                                                                                                                                                                                                               |                       | Holcman <sup>13</sup>                   |                       |                      |                               |
| 9  | $C_6H_5CH_2OH^+ + H_2O \Longrightarrow ALKHCHD + H^+$                                                                                                                                                         | 2.40.10-3             | est. Steenken and Ramaraj <sup>19</sup> | 1.20.106              | 5.0·10 <sup>8</sup>  | Sehested et al. 14            |
| 10 | $C_6H_5CH(OH)_2^+ + H_2O \implies ALDHCHD + H^+$                                                                                                                                                              | 2.40.10-3             | est. Steenken and Ramaraj <sup>19</sup> | $1.20.10^{6}$         | 5.0·10 <sup>8</sup>  | Sehested et al. 14            |
| 11 | $C_6H_5CHO + H_2O \Longrightarrow C_6H_5CH(OH)_2$                                                                                                                                                             | 1.1.10-2              | Greenzaid <sup>20</sup>                 | 5.5·10 <sup>8</sup>   | $5.0.10^{10}$        | est.                          |
| 12 | $HOC_6H_4CHO + H_2O \Longrightarrow HOC_6H_4CH(OH)_2$                                                                                                                                                         | 1.1.10-2              | est.                                    | 5.5·10 <sup>8</sup>   | $5.0.10^{10}$        | est.                          |
| 13 | $(HO)_2C_6H_3CHO + H_2O \longrightarrow (HO)_2C_6H_3CH(OH)_2$                                                                                                                                                 | 1.1.10-2              | est.                                    | 5.5·10 <sup>8</sup>   | $5.0.10^{10}$        | est.                          |
| 14 | $C_6H_5CO_2H \Longrightarrow C_6H_5CO_2$                                                                                                                                                                      | 6.3·10 <sup>-5</sup>  | Remucal and Manley <sup>21</sup>        | $3.2 \cdot 10^{6}$    | $5.0.10^{10}$        | est.                          |
| 15 | $HOC_6H_4CO_2H \Longrightarrow HOC_6H_4CO_2^-$                                                                                                                                                                | 1.51.10-3             | Park <sup>22</sup>                      | $7.57 \cdot 10^{7}$   | $5.0.10^{10}$        | est.                          |
| 16 | $HOC_6H_4CO_2^- + Fe^{3+} \longrightarrow FeHOC_6H_4CO_2^{2+}$                                                                                                                                                | 2.51·10 <sup>4</sup>  | Park <sup>22</sup>                      | $1.26 \cdot 10^{15}$  | $5.0.10^{10}$        | est.                          |
| 17 | $(HO)_2C_6H_3CO_2H  (HO)_2C_6H_3CO_2^-$                                                                                                                                                                       | 2.00.10-3             | est. 2,3-dihydroxybenzoic               | $1.00.10^{8}$         | $5.0.10^{10}$        | est.                          |
|    |                                                                                                                                                                                                               |                       | acid, Avdeef et al. <sup>23</sup>       |                       |                      |                               |
| 18 | $(\mathrm{HO})_2\mathrm{C}_6\mathrm{H}_3\mathrm{CO}_2\mathrm{H} + \mathrm{Fe}^{3+} \underbrace{\longrightarrow} (\mathrm{O})\mathrm{Fe}(\mathrm{CO}_2)\mathrm{C}_6\mathrm{H}_3\mathrm{OH}^+ + 2 \mathrm{H}^+$ | $7.00 \cdot 10^{0}$   | Xu and Jordan <sup>24</sup>             | 3.50·10 <sup>11</sup> | $5.0.10^{10}$        | est.                          |
| 19 | $(HO)_2C_6H_3CO_2^- + Fe^{3+} + H^+ = (O)Fe(CO_2)C_6H_3OH^+ + 2 H^+$                                                                                                                                          | 3.50·10 <sup>3</sup>  | Xu and Jordan <sup>24</sup>             | $1.75 \cdot 10^{14}$  | $5.0.10^{10}$        | est.                          |
| 20 | $(O)Fe(CO_2)C_6H_3OH^+ = Fe^+(O)_2C_6H_3CO_2^- + H^+$                                                                                                                                                         | 1.00.10-6             | Xu and Jordan <sup>24</sup>             | $5.00 \cdot 10^4$     | $5.0.10^{10}$        | est.                          |
| 21 | $(HO)_{3}C_{6}H_{2}CO_{2}H  (HO)_{3}C_{6}H_{2}CO_{2}$                                                                                                                                                         | 3.98·10 <sup>-5</sup> | est. gallic acid,                       | 1.99·10 <sup>6</sup>  | $5.0.10^{10}$        | est.                          |
|    |                                                                                                                                                                                                               |                       | Dwibedy et al. <sup>25</sup>            |                       |                      |                               |
| 22 | $(HO)_{3}C_{6}H_{2}CO_{2}H + FeOH^{2+} = Fe(O)_{2}(HO)C_{6}H_{2}CO_{2}H^{+} + H^{+}$                                                                                                                          | $1.42 \cdot 10^{2}$   | Hynes and O Coinceanainn <sup>26</sup>  | 2.83·10 <sup>3</sup>  | 2.0·10 <sup>1</sup>  |                               |
| 23 | $2\text{-HOC}_6\text{H}_4\text{O} + \text{O}_2 = 1, 2\text{-}\text{C}_6\text{H}_4\text{O}_2 + \text{HO}_2$                                                                                                    | 1.60.10-2             | Valgimigli et al. <sup>27</sup>         | 1.6.106               | $1.0.10^{8}$         |                               |

 Table S2 Aqueous-phase equilibriums of CAPRAM-AM1.0.

|    | Reaction                                                                                                                                       | K                      | Ref.                                 | k <sub>f,298</sub>   | k <sub>b,298</sub>   | Ref. |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|----------------------|----------------------|------|
| 24 | $4-HOC_6H_4O + O_2 \implies 1, 4-C_6H_4O_2 + HO_2$                                                                                             | 1.60.10-2              | Valgimigli et al. <sup>27</sup>      | 1.6·10 <sup>6</sup>  | 1.0.108              |      |
| 25 | $2,4-C_6H_4N_2O_5 = 2,4-C_6H_3N_2O_5 + H^+$                                                                                                    | 8.13·10 <sup>-5</sup>  | cal.                                 | $4.06 \cdot 10^{6}$  | $5.0.10^{10}$        | est. |
| 26 | $2,4-C_7H_6N_2O_5 = 2,4-C_6H_5N_2O_5 + H^+$                                                                                                    | 3.55·10 <sup>-5</sup>  | cal.                                 | $1.77 \cdot 10^{6}$  | 5.0·10 <sup>10</sup> | est. |
| 27 | $4 - C_6 H_5 NO_4 = 4 - C_6 H_4 NO_4 + H^+$                                                                                                    | 1.35.10-7              | cal.                                 | 6.74·10 <sup>3</sup> | $5.0.10^{10}$        | est. |
| 28 | $4 - C_7 H_7 NO_4 = 4 - C_7 H_6 NO_4 + H^+$                                                                                                    | 1.38•10-7              | cal.                                 | 6.90·10 <sup>3</sup> | 5.0·10 <sup>10</sup> | est. |
| 29 | $2 - C_6 H_4 ClOH \Longrightarrow 2 - C_6 H_4 ClO^-$                                                                                           | 2.75·10 <sup>-9</sup>  | Deborde and von Gunten <sup>28</sup> | 1.38·10 <sup>2</sup> | 5.0·10 <sup>10</sup> | est. |
| 30 | $4\text{-}C_6\text{H}_4\text{ClOH} \Longrightarrow 4\text{-}C_6\text{H}_4\text{ClO}$                                                           | 3.72-10-10             | Deborde and von Gunten <sup>28</sup> | 1.86·10 <sup>1</sup> | $5.0.10^{10}$        | est. |
| 31 | $2,4-C_6H_3Cl_2OH \Longrightarrow 2,4-C_6H_3Cl_2O^-$                                                                                           | 1.41.10-8              | Deborde and von Gunten <sup>28</sup> | $7.05 \cdot 10^2$    | $5.0.10^{10}$        | est. |
| 32 | $2,6-C_6H_3Cl_2OH \Longrightarrow 2,6-C_6H_3Cl_2O^-$                                                                                           | 1.07.10-7              | Deborde and von Gunten <sup>28</sup> | 5.35·10 <sup>3</sup> | $5.0.10^{10}$        | est. |
| 33 | $2,4,6-C_6H_2Cl_3OH \Longrightarrow 2,4,6-C_6H_2Cl_3O$                                                                                         | 7.10.10-7              | Deborde and von Gunten <sup>28</sup> | 3.55·10 <sup>4</sup> | $5.0.10^{10}$        | est. |
| 34 | $2-C_6H_4BrOH \Longrightarrow 2-C_6H_4BrO^-$                                                                                                   | 3.55·10 <sup>-9</sup>  | Deborde and von Gunten <sup>28</sup> | $1.78 \cdot 10^{2}$  | $5.0.10^{10}$        | est. |
| 35 | $4-C_6H_4BrOH \Longrightarrow 4-C_6H_4BrO^-$                                                                                                   | 6.76·10 <sup>-10</sup> | Deborde and von Gunten <sup>28</sup> | 3.38·10 <sup>1</sup> | $5.0.10^{10}$        | est. |
| 36 | $2,4-C_6H_3Br_2OH \Longrightarrow 2,4-C_6H_3Br_2O^-$                                                                                           | 1.41.10-8              | Deborde and von Gunten <sup>28</sup> | $7.05 \cdot 10^2$    | $5.0.10^{10}$        | est. |
| 37 | $2,6-C_6H_3Br_2OH \Longrightarrow 2,6-C_6H_3Br_2O^-$                                                                                           | 1.07.10-7              | Deborde and von Gunten <sup>28</sup> | 5.35·10 <sup>3</sup> | $5.0.10^{10}$        | est. |
| 38 | $2,4,6-C_6H_2Br_3OH \Longrightarrow 2,4,6-C_6H_2Br_3O^-$                                                                                       | 7.10.10-7              | Deborde and von Gunten <sup>28</sup> | 3.55·10 <sup>4</sup> | $5.0.10^{10}$        | est. |
| 39 | $2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}\mathrm{H} \Longrightarrow 2\text{-}\mathrm{ClC}_{6}\mathrm{H}_{5}\mathrm{CO}_{2}^{-1}$ | 1.29·10 <sup>-3</sup>  | cal.                                 | 6.44·10 <sup>7</sup> | 5.0·10 <sup>10</sup> | est. |
| 40 | $HOC_6H_3BrCO_2H \Longrightarrow HOC_6H_3BrCO_2^-$                                                                                             | 2.24·10 <sup>-3</sup>  | cal.                                 | 1.12.108             | 5.0·10 <sup>10</sup> | est. |

|       | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment                              | Reference                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------|---------------------------------------------|
| A1    | $C_6H_5OH + OH \rightarrow 0.92$ PHENHCHD + 0.08 $C_6H_5O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.41·10 <sup>9</sup> |                    | Raghavan and Steenken 29             | Bonin et al. <sup>30</sup>                  |
| A2    | $C_6H_5OH + NO_3 \rightarrow C_6H_5OH^+ + NO_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.90·10 <sup>9</sup> | -2100              | ETR                                  | Umschlag et al. <sup>31</sup>               |
| A3    | $C_6H_5OH + SO_4^- \rightarrow C_6H_5OH^+ + SO_4^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.80·10 <sup>9</sup> |                    | ETR                                  | Ziajka and Pasiuk-Bronikowska <sup>32</sup> |
| A4    | $C_6H_5OH + Cl \rightarrow C_6H_5OH^+ + Cl^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.50 \cdot 10^{10}$ |                    | ETR                                  | Alfassi et al. <sup>33</sup>                |
| A5    | $C_6H_5OH + Cl_2^- \rightarrow C_6H_5OH^+ + 2 Cl^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.20.108             | -878               | ETR after Vione et al. <sup>34</sup> | Alfassi et al. <sup>35</sup>                |
| A6    | $C_6H_5OH + Br_2^- \rightarrow C_6H_5OH^+ + 2 Br^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.10·10 <sup>6</sup> | -2080              | ETR                                  | Alfassi et al. <sup>35</sup>                |
| A7    | $C_6H_5OH + CO_3^- \rightarrow C_6H_5OH^+ + CO_3^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.20.107             |                    | ETR                                  | Chen and Hoffman <sup>36</sup>              |
| A8    | $C_6H_5OH + NO_2 \rightarrow C_6H_5OH^+ + NO_2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.90·10 <sup>2</sup> |                    | ETR                                  | Vione et al. <sup>37</sup>                  |
| A9    | $C_6H_5O^- + NO_2 \rightarrow C_6H_5O + NO_2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50.107             | -4126              | ETR                                  | Alfassi et al. <sup>35</sup>                |
| A10   | $C_6H_5OH + NO_2^+ \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.00 \cdot 10^{10}$ |                    | diffusion limited                    | Heal et al. <sup>38</sup>                   |
|       | $0.6 \ 2 - C_6 H_5 NO_3 + 0.4 \ 4 - C_6 H_5 NO_3 + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                    |                                      |                                             |
| A11   | $C_6H_5OH + O_3 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.30·10 <sup>3</sup> |                    | yields $pH = 2$ Mvula and von        | Hoigne and Bader <sup>40</sup>              |
|       | $0.46 \ 1,4-C_6H_4O_2 + 0.08 \ 1,4-C_6H_4(OH)_2 + 0.23 \ 1,2-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                    | Sonntag <sup>39</sup>                |                                             |
|       | $C_6H_4(OH)_2 + 0.23 \ C_6H_6O_4 + 0.46 \ H_2O_2 - 0.54 \ H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                    |                                      |                                             |
| A12   | $C_6H_5O^- + O_3 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.40 \cdot 10^{9}$  |                    | yields $pH = 10$ Mvula and           | Hoigne and Bader <sup>40</sup>              |
|       | $0.57 \ 1,4\text{-}C_6\text{H}_4\text{O}_2 + 0.04 \ C_6\text{H}_5\text{O} + 0.01 \ 1,4\text{-}C_6\text{H}_4(\text{OH})_2 + 0.01 \ 1,4\text{-}C_6\text{H}_4(\text{OH}$ |                      |                    | von Sonntag <sup>39</sup>            |                                             |
|       | $0.04 O_3^- + 0.36 1,2-C_6H_4(OH)_2 + 0.02 C_6H_5O_4^- + 0.57 H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |                                      |                                             |
|       | – 0.94 H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |                                      |                                             |
| A13   | $HOC1 + C_6H_5OH \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3.60 \cdot 10^{-1}$ |                    |                                      | Gallard and Von Gunten <sup>41</sup>        |
|       | $0.8 \ 2 - C_6 H_4 CIOH + 0.2 \ 4 - C_6 H_4 CIOH + H_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                    |                                      |                                             |
| A14   | $HOCl + C_6H_5OH + H^+ \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $3.52 \cdot 10^4$    |                    |                                      | Gallard and Von Gunten <sup>41</sup>        |
| 4.1.5 | $0.82 - C_6 H_4 CIOH + 0.24 - C_6 H_4 CIOH + H_2 O + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 10 104             |                    |                                      |                                             |
| A15   | $HOC1 + C_6H_5O^- \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.19.104             |                    |                                      | Gallard and Von Gunten <sup>41</sup>        |
| A 1 C | $0.82 - C_6 H_4 C IO^2 + 0.24 - C_6 H_4 C IO^2 + H_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 00 102             |                    |                                      |                                             |
| A16   | $HOBT + C_6H_5OH \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.00.102             |                    |                                      | Gallard et al. 72                           |
| A 17  | $0.0 / 2 - C_6 H_4 BrOH + 0.33 4 - C_6 H_4 BrOH + H_2 O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00.108             |                    |                                      | Collord at al. $4^2$                        |
| A1/   | $HOBI + C_6H_5O^- \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.80.10              |                    |                                      | Ganard et al. "                             |

Table S3 Aqueous-phase reactions of CAPRAM-AM1.0.

|     | Reaction                                                                                                                                           | k <sub>298</sub>        | -E <sub>A</sub> /R   | Comment                               | Reference                                                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|---------------------------------------|---------------------------------------------------------------------|
|     | $0.67 \ 2 - C_6 H_4 BrO^- + 0.33 \ 4 - C_6 H_4 BrO^- + H_2 O$                                                                                      |                         |                      |                                       |                                                                     |
| A18 | $C_6H_5OH + HONO \rightarrow 4-C_6H_5NO_2 + H_2O$                                                                                                  | 9.20·10 <sup>-3</sup>   |                      |                                       | Vione et al. <sup>37</sup>                                          |
| A19 | $4\text{-}C_6\text{H}_5\text{NO}_2 \rightarrow 4\text{-}C_6\text{H}_5\text{NO}_3$                                                                  | 3.00-10-5               |                      |                                       | Vione et al. <sup>37</sup>                                          |
| A20 | $C_6H_5OH^+ + Fe^{2+} \rightarrow C_6H_5OH + Fe^{3+}$                                                                                              | 6.00·10 <sup>8</sup>    |                      | est. same as for Anisole              | Walling et al. 43                                                   |
| A21 | $C_6H_5O + HO_2 \rightarrow C_6H_5OH + O_2$                                                                                                        | 2.00·10 <sup>9</sup>    |                      |                                       | Vione et al. <sup>34</sup>                                          |
| A22 | $C_6H_5O + O_2^- \rightarrow 1,4-C_6H_4O_2 - H^+ - H_2O$                                                                                           | 1.00·10 <sup>9</sup>    |                      |                                       | Mvula and von Sonntag 39                                            |
| A23 | $C_6H_5O + Cl_2 \rightarrow$                                                                                                                       | 3.00·10 <sup>3</sup>    |                      | yields est. like for HOCl             | Martire et al. 44                                                   |
|     | $0.8 \ 2 - C_6 H_4 CIOH + 0.2 \ 4 - C_6 H_4 CIOH + Cl^{-1}$                                                                                        |                         |                      |                                       |                                                                     |
| A24 | $C_6H_5O + Br_2 \rightarrow$                                                                                                                       | $1.80.10^{5}$           |                      | 60 times higher formation             | Calza et al. <sup>45</sup>                                          |
|     | $0.67 \ 2 - C_6 H_4 BrOH + 0.33 \ 4 - C_6 H_4 BrOH + Br$                                                                                           |                         |                      | rate of bromophenols                  |                                                                     |
| A25 | $C_6H_5O + NO_2 \rightarrow 0.67 \ 2\text{-}C_6H_5NO_3 + 0.33 \ 4\text{-}C_6H_5NO_3$                                                               | $3.00 \cdot 10^9$       |                      |                                       | Vione et al. <sup>46</sup>                                          |
| A26 | $C_6H_5O + C_6H_5O \rightarrow C_{12}H_{10}O_2$                                                                                                    | 2.45·10 <sup>9</sup>    |                      |                                       | Mvula and von Sonntag 39                                            |
| A27 | $2\text{-}C_6\text{H}_5\text{NO}_3 + h^{\mathcal{V}} \rightarrow C_6\text{H}_4(\text{OH})_2 + \text{HONO} - \text{H}_2\text{O}$                    | 1.896·10 <sup>-06</sup> | $\cos(\chi)^{0.670}$ | $exp(-0.081/cos(\chi))$               | Alif et al. 47                                                      |
| A28 | $PHENHCHD + O_2 \rightarrow$                                                                                                                       | 1.20.109                |                      | yields Barzaghi and                   | Mvula et al. <sup>49</sup>                                          |
|     | $0.5 1,2-C_6H_4(OH)_2 + 0.5 1,4-C_6H_4(OH)_2 + HO_2$                                                                                               |                         |                      | Herrmann <sup>48</sup>                |                                                                     |
| A29 | $PHENHCHD + Fe^{3+} \rightarrow$                                                                                                                   | $7.00 \cdot 10^3$       |                      |                                       | Metelitsa <sup>50</sup>                                             |
|     | $0.5 \ 1,2-C_6H_4(OH)_2 + 0.5 \ 1,4-C_6H_4(OH)_2 + Fe^{2+} + H^+$                                                                                  |                         |                      |                                       |                                                                     |
| A30 | 2 PHENHCHD $\rightarrow$                                                                                                                           | $1.00.10^{8}$           |                      | as HCHD, Mantaka et al. <sup>51</sup> | Mvula et al. <sup>49</sup>                                          |
|     | $0.5 1,2-C_6H_4(OH)_2 + 0.5 1,4-C_6H_4(OH)_2 + C_6H_5OH$                                                                                           |                         |                      |                                       |                                                                     |
| A31 | $PHENHCHD + NO_2 \rightarrow 0.5 \ 2\text{-}C_6H_5NO_3 + 0.5 \ 4\text{-}C_6H_5NO_3$                                                                | $8.20 \cdot 10^9$       |                      |                                       | Barzaghi and Herrmann <sup>48</sup>                                 |
| A32 | $1,2\text{-}C_6\text{H}_4(\text{OH})_2 + \text{OH} \rightarrow 1,2\text{-}C_6\text{H}_4\text{O}_2 + \text{HO}_2 - \text{O}_2 + \text{H}_2\text{O}$ | $4.70 \cdot 10^9$       |                      | Scheck and Frimmel 52                 | mean from Smith et al. <sup>53</sup>                                |
| A33 | $1,2-C_6H_4(OH)_2 + NO_3 \rightarrow 2-HOC_6H_4O + NO_3^- + H^+$                                                                                   | 5.20.108                | -4691                | H-abstraction                         | Barzaghi and Herrmann 54                                            |
| A34 | $1,2-C_6H_4(OH)_2 + SO_4^- \rightarrow 2-HOC_6H_4O + SO_4^{2-} + H^+$                                                                              | 5.20·10 <sup>8</sup>    | -4691                | H-abstraction                         | est. after Herrmann et al. 55                                       |
| A35 | $1,2-C_6H_4(OH)_2 + HO_2 \rightarrow 2-HOC_6H_4O + H_2O_2$                                                                                         | 4.70·10 <sup>4</sup>    |                      | H-abstraction                         | Bielski et al. 56                                                   |
| A36 | $1,2\text{-}C_6\text{H}_4(\text{OH})_2 + \text{O}_2^- \rightarrow 2\text{-}\text{HOC}_6\text{H}_4\text{O} + \text{H}_2\text{O}_2 - \text{H}^+$     | $2.70 \cdot 10^5$       |                      | H-abstraction                         | Bielski et al. <sup>56</sup>                                        |
| A37 | $1,2\text{-}C_6\text{H}_4(\text{OH})_2 + \text{O}_3 \rightarrow \text{C}_6\text{H}_6\text{O}_4 + \text{H}_2\text{O}_2 - \text{H}_2\text{O}$        | 5.20·10 <sup>5</sup>    |                      | est.                                  | Mvula and von Sonntag 39                                            |
| A38 | $1,2-C_6H_4(OH)_2 + 2 \text{ HONO} \rightarrow 1,2-C_6H_4O_2 + 2 \text{ NO} + 2 H_2O$                                                              | $4.51 \cdot 10^{0}$     |                      |                                       | Khalafi and Rafiee 57                                               |
| A39 | $FeC_6H_5O^{2+} + h^{\mathcal{V}} \rightarrow Fe^{2+} + C_6H_5O$                                                                                   | 4.764·10 <sup>-02</sup> | $\cos(\chi)^{0.829}$ | $Pexp(-0.291/cos(\chi))$              | est. Fe(OH) <sub>2</sub> <sup>2+</sup> Arakaki et al. <sup>58</sup> |

|     | Reaction                                                                                                                                                                                                        | k <sub>298</sub>              | -E <sub>A</sub> /R   | Comment                                         | Reference                                                          |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|-------------------------------------------------|--------------------------------------------------------------------|
| A40 | $\operatorname{FeC}_{6}\operatorname{H}_{4}\operatorname{O}_{2}^{+} + h^{\mathcal{V}} \rightarrow \operatorname{Fe}^{2+} + 2\operatorname{-HOC}_{6}\operatorname{H}_{4}\operatorname{O} - \operatorname{H}^{+}$ | 1.343.10-02                   | $\cos(\chi)^{0.855}$ | $exp(-0.300/cos(\chi))$                         | est. Fe(OH) <sub>2</sub> <sup>+</sup> Arakaki et al. <sup>58</sup> |
| A41 | $1,4\text{-}C_6\text{H}_4(\text{OH})_2 + \text{OH} \rightarrow 1,4\text{-}C_6\text{H}_4\text{O}_2 + \text{HO}_2 - \text{O}_2 + \text{H}_2\text{O}$                                                              | $1.60 \cdot 10^{10}$          |                      | products after Scheck and Frimmel 52            | Oturan et al. <sup>59</sup>                                        |
| A42 | $1,4-C_6H_4(OH)_2 + NO_3 \rightarrow 4-HOC_6H_4O + NO_3^- + H^+$                                                                                                                                                | 8.80·10 <sup>8</sup>          |                      | H-abstraction                                   | Barzaghi and Herrmann 54                                           |
| A43 | $1,4-C_6H_4(OH)_2 + SO_4^- \rightarrow 4-HOC_6H_4O + SO_4^{2-} + H^+$                                                                                                                                           | 8.80·10 <sup>8</sup>          |                      | H-abstraction                                   | est. after Herrmann et al. 55                                      |
| A44 | $1,4-C_6H_4(OH)_2 + HO_2 \rightarrow 4-HOC_6H_4O + H_2O_2$                                                                                                                                                      | 8.50·10 <sup>3</sup>          |                      | H-abstraction                                   | Nadezhdin and Dunford 60                                           |
| A45 | $1,4\text{-}C_6\text{H}_4(\text{OH})_2 + \text{O}_2^- \rightarrow 4\text{-}\text{HOC}_6\text{H}_4\text{O} + \text{H}_2\text{O}_2 - \text{H}^+$                                                                  | $1.70 \cdot 10^{7}$           |                      | H-abstraction                                   | Rao and Hayon <sup>61</sup>                                        |
| A46 | $1,4-C_6H_4(OH)_2+O_3 \rightarrow 1,4-C_6H_4O_2+HO_2+OH$                                                                                                                                                        | $1.80.10^{6}$                 |                      | product est.                                    | Mvula and von Sonntag 39                                           |
| A47 | $1,2\text{-}C_6\text{H}_4\text{O}_2 + \text{OH} \rightarrow \text{C}_6\text{H}_6\text{O}_4 + \text{HO}_2 - \text{O}_2$                                                                                          | 6.60·10 <sup>9</sup>          |                      | products after Scheck and Frimmel <sup>52</sup> | Schuchmann et al. <sup>62</sup>                                    |
| A48 | $1,2-C_6H_4O_2 + NO_2^- \rightarrow NO_2C_6H_3(OH)_2 + OH^ H_2O$                                                                                                                                                | 1.16·10 <sup>1</sup>          |                      |                                                 | Khalafi and Rafiee 57                                              |
| A49 | $1,4-C_6H_4O_2 + OH \rightarrow C_4H_4O_4 + C_2H_2O_2 + HO_2 - 2 O_2$                                                                                                                                           | 6.60·10 <sup>9</sup>          |                      | products after Scheck and Frimmel 52            | Schuchmann et al. <sup>62</sup>                                    |
| A50 | $1,4-C_6H_4O_2 + NO_3 \rightarrow C_4H_4O_4 + C_2H_2O_2 + HO_2 + NO_3^- + H^+ - 2 O_2$                                                                                                                          | 1.00 <b>·</b> 10 <sup>8</sup> |                      |                                                 | est. after Herrmann et al. 55                                      |
| A51 | $1,4-C_{6}H_{4}O_{2} + SO_{4}^{-} \rightarrow C_{4}H_{4}O_{4} + C_{2}H_{2}O_{2} + HO_{2} + SO_{4}^{2-} + H^{+} - 2O_{2}$                                                                                        | 1.00.108                      |                      |                                                 | Criquet and Leitner <sup>63</sup>                                  |
| A52 | $2-HOC_6H_4O + Fe^{2+} + H^+ \rightarrow 1, 2-C_6H_4(OH)_2 + Fe^{3+}$                                                                                                                                           | 1.50·10 <sup>5</sup>          |                      | est same 4-HOC <sub>6</sub> H <sub>4</sub> O    | Neta and Grodkowski <sup>64</sup>                                  |
| A53 | $2-\text{HOC}_6\text{H}_4\text{O} + \text{Fe}^{3+} \rightarrow 1, 2-\text{C}_6\text{H}_4\text{O}_2 + \text{Fe}^{2+} + \text{H}^+$                                                                               | 7.00·10 <sup>5</sup>          |                      | est same 4-HOC <sub>6</sub> H <sub>4</sub> O    | Neta and Grodkowski 64                                             |
| A54 | $22 - HOC_6H_4O \rightarrow 1, 2 - C_6H_4(OH)_2 + 1, 2 - C_6H_4O_2$                                                                                                                                             | 1.09·10 <sup>9</sup>          |                      |                                                 | Adams and Michael <sup>65</sup>                                    |
| A55 | $4\text{-HOC}_{6}\text{H}_{4}\text{O} + \text{Fe}^{2+} + \text{H}^{+} \rightarrow 1, 4\text{-C}_{6}\text{H}_{4}(\text{OH})_{2} + \text{Fe}^{3+}$                                                                | 1.50·10 <sup>5</sup>          |                      |                                                 | Neta and Grodkowski <sup>64</sup>                                  |
| A56 | 4-HOC <sub>6</sub> H <sub>4</sub> O + Fe <sup>3+</sup> → 1,4-C <sub>6</sub> H <sub>4</sub> O <sub>2</sub> + Fe <sup>2+</sup> + H <sup>+</sup>                                                                   | 7.00·10 <sup>5</sup>          |                      |                                                 | Neta and Grodkowski <sup>64</sup>                                  |
| A57 | $2 4-HOC_6H_4O \rightarrow 1, 4-C_6H_4(OH)_2 + 1, 4-C_6H_4O_2$                                                                                                                                                  | 1.09·10 <sup>9</sup>          |                      |                                                 | Adams and Michael <sup>65</sup>                                    |
| A58 | $HOCl + 2-C_6H_4ClO^- \rightarrow$                                                                                                                                                                              | $2.42 \cdot 10^{3}$           |                      |                                                 | Gallard and von Gunten 66                                          |
|     | $0.7 2,6-C_6H_3Cl_2O^- + 0.3 2,4-C_6H_3Cl_2O^- + H_2O$                                                                                                                                                          |                               |                      |                                                 |                                                                    |
| A59 | $HOCl + 4-C_6H_4ClOH \rightarrow 2, 4-C_6H_3Cl_2OH + H_2O$                                                                                                                                                      | 2.00.10-2                     |                      |                                                 | Gallard and von Gunten 66                                          |
| A60 | $HOCl + 4-C_6H_4ClO^- \rightarrow 2, 4-C_6H_3Cl_2O^- + H_2O$                                                                                                                                                    | 2.67·10 <sup>3</sup>          |                      |                                                 | Gallard and von Gunten <sup>66</sup>                               |
| A61 | $HOCl + 2,6-C_6H_3Cl_2O^- \rightarrow 2,4,6-C_6H_2Cl_3O^- + H_2O$                                                                                                                                               | 1.94·10 <sup>2</sup>          |                      |                                                 | Gallard and von Gunten 66                                          |

|     | Reaction                                                                                                                                                                                 | k <sub>298</sub>              | -E <sub>A</sub> /R | Comment                           | Reference                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|-----------------------------------|--------------------------------------|
| A62 | $HOCl + 2,4-C_6H_3Cl_2O^- \rightarrow 2,4,6-C_6H_2Cl_3O^- + H_2O$                                                                                                                        | $3.03 \cdot 10^2$             |                    |                                   | Gallard and von Gunten 66            |
| A63 | $HOBr + 2 - C_6 H_4 BrO^- \rightarrow$                                                                                                                                                   | 6.40·10 <sup>6</sup>          |                    |                                   | Echigo and Minear <sup>67</sup>      |
|     | $0.7 2,6-C_6H_3Br_2O^2 + 0.3 2,4-C_6H_3Br_2O^2 + H_2O^2$                                                                                                                                 |                               |                    |                                   |                                      |
| A64 | $HOBr + 4-C_6H_4BrO^- \rightarrow 2, 4-C_6H_3Br_2O^- + H_2O$                                                                                                                             | $4.80 \cdot 10^{6}$           |                    |                                   | Echigo and Minear 67                 |
| A65 | $\mathrm{HOBr}+2,6\text{-}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{Br}_{2}\mathrm{OH}\rightarrow2,4,6\text{-}\mathrm{C}_{6}\mathrm{H}_{2}\mathrm{Br}_{3}\mathrm{OH}+\mathrm{H}_{2}\mathrm{O}$ | $1.70 \cdot 10^4$             |                    |                                   | Acero et al. 68                      |
| A66 | $HOBr + 2,6-C_6H_3Br_2O^- \rightarrow 2,4,6-C_6H_2Br_3O^- + H_2O$                                                                                                                        | 4.80·10 <sup>5</sup>          |                    |                                   | Acero et al. 68                      |
| A67 | $\mathrm{HOBr}+2,4\text{-}\mathrm{C_6H_3Br_2OH} \rightarrow 2,4,6\text{-}\mathrm{C_6H_2Br_3OH} + \mathrm{H_2O}$                                                                          | $1.20 \cdot 10^4$             |                    |                                   | Acero et al. 68                      |
| A68 | $HOBr + 2,4-C_6H_3Br_2O^- \rightarrow 2,4,6-C_6H_2Br_3O^- + H_2O$                                                                                                                        | 8.90·10 <sup>5</sup>          |                    |                                   | Acero et al. 68                      |
| A69 | $C_7H_7OH + OH \rightarrow C_7H_6(OH)_2$                                                                                                                                                 | $1.10 \cdot 10^{10}$          |                    | product Zhang et al. 69           | Buxton et al. <sup>70</sup>          |
| A70 | $C_7H_7OH + NO_3 \rightarrow C_7H_7OH^+ + NO_3^-$                                                                                                                                        | 1.10.109                      |                    |                                   | Umschlag et al. <sup>31</sup>        |
| A71 | $C_7H_7OH + SO_4^- \rightarrow C_7H_7OH^+ + SO_4^{2-}$                                                                                                                                   | 3.40·10 <sup>9</sup>          |                    |                                   | Choure et al. <sup>18</sup>          |
| A72 | $C_7H_7OH + Cl_2^- \rightarrow C_7H_7OH^+ + 2 Cl^-$                                                                                                                                      | 4.30·10 <sup>7</sup>          |                    |                                   | Herrmann <sup>71</sup>               |
| A73 | $C_7H_7OH + Br_2^- \rightarrow C_7H_7OH^+ + 2 Br^-$                                                                                                                                      | 4.30·10 <sup>6</sup>          |                    |                                   | est. one order of magnitude lower as |
|     |                                                                                                                                                                                          |                               |                    |                                   | Cl <sub>2</sub> -                    |
| A74 | $C_7H_7O^- + NO_2 \rightarrow C_7H_7O + NO_2^-$                                                                                                                                          | 3.40.107                      |                    |                                   | Alfassi et al. <sup>72</sup>         |
| A75 | $C_7H_7OH + NO_2^+ \rightarrow 2-C_7H_7NO_3 + H^+$                                                                                                                                       | 4.07·10 <sup>5</sup>          |                    | est. same as for guaiacol         | Kroflic et al. <sup>73</sup>         |
| A76 | $C_7H_7OH + O_3 \rightarrow C_7H_6(OH)_2 + O_2$                                                                                                                                          | $5.48 \cdot 10^4$             | -5300              |                                   | Zheng and Kuo <sup>74</sup>          |
| A77 | $C_7H_7OH + HONO \rightarrow 2-C_7H_7NO_2$                                                                                                                                               | 9.20·10 <sup>-3</sup>         |                    | est. same as for phenol           | Vione et al. <sup>37</sup>           |
| A78 | $2\text{-}C_7\text{H}_7\text{NO}_2 \rightarrow 2\text{-}C_7\text{H}_7\text{NO}_3$                                                                                                        | 3.00.10-5                     |                    | est. same as for<br>nitrosophenol | Vione et al. <sup>37</sup>           |
| A79 | $C_7H_7OH^+ + Fe^{2+} \rightarrow C_7H_7OH + Fe^{3+}$                                                                                                                                    | 6.00 <b>·</b> 10 <sup>8</sup> |                    | est. same as for Anisole          | Walling et al. 43                    |
| A80 | $CRESCHD + O_2 \rightarrow$                                                                                                                                                              | $2.00.10^{6}$                 |                    | yields from calculations in       | PSSA Fang et al. <sup>76</sup>       |
|     | $0.4 \text{ C}_{7}\text{H}_{6}(\text{OH})_{2} + 0.4 \text{ HO}_{2} + 0.6 \text{ CRESO2}$                                                                                                 |                               |                    | Merga et al. <sup>75</sup>        | -                                    |
| A81 | $CRESCHD + Fe^{3+} \rightarrow C_7H_6(OH)_2 + Fe^{2+} + H^+$                                                                                                                             | $7.00 \cdot 10^3$             |                    | est. like PHENHCHD                | Metelitsa <sup>50</sup>              |
| A82 | $CRESCHD + NO_2 \rightarrow 2 - C_7 H_7 NO_3$                                                                                                                                            | 8.20·10 <sup>9</sup>          |                    | est. same as for PHENHCHD         | Barzaghi and Herrmann <sup>48</sup>  |
| A83 | $2 \text{ CRESCHD} \rightarrow \text{C}_7\text{H}_6(\text{OH})_2 + \text{C}_7\text{H}_7\text{OH}$                                                                                        | $1.00.10^{8}$                 |                    | as HCHD, Mantaka et al. 51        | Mvula et al. <sup>49</sup>           |
| A84 | $2 \text{ CRESO2} \rightarrow$                                                                                                                                                           | 1.00.106                      |                    | yields after recombination in     | Tilgner and Herrmann <sup>77</sup>   |
|     | $1.36 \text{ C}_5\text{H}_6\text{O}_3 + 1.36 \text{ C}_2\text{H}_2\text{O}_2 + 0.64 \text{ C}_7\text{H}_6\text{O}_2 + 2 \text{ HO}_2$                                                    |                               |                    | MCM                               | -                                    |

|      | Reaction                                                                                                                     | k <sub>298</sub>          | -E <sub>A</sub> /R   | Comment                                          | Reference                      |
|------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--------------------------------------------------|--------------------------------|
| A85  | $CRESO2 \rightarrow$                                                                                                         | $2.00 \cdot 10^2$         |                      | HO <sub>2</sub> elimination                      | Bräuer <sup>78</sup>           |
|      | $0.4 C_5 H_7 O_2 + 0.2 C_5 H_6 O_3 + 0.6 C_2 H_2 O_2 + 0.4 C_3 H_4 O_2 + 0.2$                                                |                           |                      | 2                                                |                                |
|      | $C_4H_4O_2 + 0.2 C_4H_4O_3 + 2 HO_2$                                                                                         |                           |                      |                                                  |                                |
| A86  | $C_7H_7O + HO_2 \rightarrow C_7H_7OH$                                                                                        | 2.0·10 <sup>9</sup>       |                      |                                                  | Vione et al. <sup>34</sup>     |
| A87  | $C_7H_7O + O_2^- \rightarrow C_7H_6O_2 - H^+ - H_2O$                                                                         | 1.00·10 <sup>9</sup>      |                      |                                                  | Mvula and von Sonntag 39       |
| A88  | $C_7H_7O + NO_2 \rightarrow 2 - C_7H_7NO_3$                                                                                  | 3.00.109                  |                      | est. same as for C <sub>6</sub> H <sub>5</sub> O | Vione et al. <sup>46</sup>     |
| A89  | $C_7H_7O + C_7H_7O \rightarrow C_{14}H_{12}O_2$                                                                              | 2.45·10 <sup>9</sup>      |                      |                                                  | Mvula and von Sonntag 39       |
| A90  | $C_7H_6(OH)_2 + OH \rightarrow C_7H_6O_2 + HO_2 - O_2 + H_2O$                                                                | $1.60 \cdot 10^{10}$      |                      | products Zhang et al. 69                         | Gohn and Getoff <sup>79</sup>  |
| A91  | $C_7H_6O_2 + OH \rightarrow C_7H_8O_4 + HO_2 - O_2 - H_2O$                                                                   | $2.00 \cdot 10^{10}$      |                      |                                                  | Zhang et al. <sup>69</sup>     |
| A92  | $4-C_6H_5NO_3 + OH \rightarrow 0.7 \text{ HONO} + 0.7 \text{ 4-HOC}_6H_4O + 0.3$                                             | 3.80.109                  |                      | products Eiben et al. 80                         | Cercek and Ebert <sup>81</sup> |
|      | NIPHENHCHD                                                                                                                   |                           |                      |                                                  |                                |
| A93  | $4\text{-}C_6\text{H}_5\text{NO}_3 + \text{NO}_3 \rightarrow \text{NIPHENHCHD} + \text{NO}_3^- + \text{H}^+$                 | $7.70 \cdot 10^8$         |                      |                                                  | Hoffmann <sup>82</sup>         |
| A94  | $4\text{-}C_6\text{H}_5\text{NO}_3 + \text{SO}_4^- \rightarrow \text{NIPHENHCHD} + \text{SO}_4^{2\text{-}} + \text{H}^+$     | 7.70·10 <sup>8</sup>      |                      |                                                  | est. after Herrmann et al. 55  |
| A95  | $4-C_6H_5NO_3 + HOBr \rightarrow C_6H_4NO_3Br + H_2O$                                                                        | 9.20·10 <sup>3</sup>      |                      |                                                  | Heeb et al. <sup>83</sup>      |
| A96  | $2\text{-}C_6\text{H}_5\text{NO}_3 + \text{OH} \rightarrow$                                                                  | 5.90·10 <sup>9</sup>      |                      | products Tanaka et al. <sup>84</sup>             | Vione et al. <sup>85</sup>     |
|      | 0.16 C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> + 0.16 NO <sub>2</sub> + 0.84 NIPHENHCHD                                |                           |                      |                                                  |                                |
| A97  | $2\text{-}C_6\text{H}_5\text{NO}_3 + \text{NO}_3 \rightarrow \text{NIPHENHCHD} + \text{H}^+ + \text{NO}_3^-$                 | 8.30.108                  |                      |                                                  | Weller et al. <sup>86</sup>    |
| A98  | $2\text{-}C_6\text{H}_5\text{NO}_3 + \text{SO}_4^- \rightarrow \text{NIPHENHCHD} + \text{SO}_4^{2\text{-}} + \text{H}^+$     | 8.30.108                  |                      |                                                  | est. after Herrmann et al. 55  |
| A99  | $4-C_6H_5NO_4 + OH \rightarrow NICATHCHD$                                                                                    | $1.00 \cdot 10^{10}$      |                      |                                                  | Oturan et al. <sup>59</sup>    |
| A100 | $2,4-C_6H_4N_2O_5 + OH \rightarrow 4-C_6H_5NO_4 + NO_2$                                                                      | 1.76·10 <sup>9</sup>      |                      | products Tanaka et al. <sup>84</sup>             | Albinet et al. <sup>87</sup>   |
| A101 | $2,4\text{-}C_6\text{H}_4\text{N}_2\text{O}_5 + h^{\mathcal{V}} \rightarrow 4\text{-}C_6\text{H}_5\text{NO}_4 + \text{HONO}$ | 1.675.10-06               | $\cos(\chi)^{0.846}$ | $\exp(-0.096/\cos(\chi))$                        | Albinet et al. <sup>87</sup>   |
| A102 | $2,4-C_6H_3N_2O_5^- + OH \rightarrow 4-C_6H_4NO_4^- + NO_2$                                                                  | 2.33·10 <sup>9</sup>      |                      | products Tanaka et al. <sup>84</sup>             | Albinet et al. <sup>87</sup>   |
| A103 | $2,4-C_6H_3N_2O_5^- + h^{\mathcal{V}} \rightarrow 4-C_6H_4NO_4^- + HONO$                                                     | 1.0·10 <sup>-05</sup> cos | $s(\chi)^{0.546} ex$ | $p(-0.117/\cos(\chi))$                           | Albinet et al. <sup>87</sup>   |
| A104 | $2\text{-}C_7\text{H}_7\text{NO}_3 + \text{OH} \rightarrow$                                                                  | $1.05 \cdot 10^{10}$      |                      | est. as 2-nitro-pcresol                          | Rindone et al. 88              |
|      | 0.16 C <sub>7</sub> H <sub>6</sub> (OH) <sub>2</sub> + 0.16 NO <sub>2</sub> + 0.84 NICRESHCHD                                |                           |                      |                                                  |                                |
| A105 | $2\text{-}C_7\text{H}_7\text{NO}_3 + \text{NO}_3 \rightarrow \text{NICRESHCHD} + \text{H}^+ + \text{NO}_3^-$                 | $1.00.10^{8}$             |                      | est. as 2-nitro-pcresol                          | Umschlag et al. <sup>31</sup>  |
| A106 | $2\text{-}C_7\text{H}_7\text{NO}_3 + \text{SO}_4^- \rightarrow \text{NICRESHCHD} + \text{SO}_4^{2\text{-}} + \text{H}^+$     | $1.00.10^{8}$             |                      | est. as 2-nitro-pcresol                          | est. after Herrmann et al. 55  |

|      | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | k <sub>298</sub>          | -E <sub>A</sub> /R    | Comment                              | Reference                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|--------------------------------------|----------------------------------------------|
| A107 | $2-C_7H_7NO_3 + Cl_2^- \rightarrow NICRESHCHD + H^+ + 2 Cl^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.50.108                  |                       |                                      | Walter <sup>89</sup>                         |
| A108 | $2-C_7H_7NO_3 + h^{\mathcal{V}} \rightarrow C_7H_6(OH)_2 + HONO - H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.896.10-06               | $\cos(\chi)^{0.670}$  | $exp(-0.081/cos(\chi))$              | est. 2-nitrophenol                           |
| A109 | NIPHENHCHD + $O_2 \rightarrow 4 - C_6 H_5 NO_4 + HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2.00 \cdot 10^{6}$       |                       | products vonSonntag et al. 90        | PSSA Fang et al. <sup>76</sup>               |
| A110 | NIPHENHCHD + $Fe^{3+} \rightarrow 4-C_6H_5NO_4 + Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $7.00 \cdot 10^3$         |                       |                                      | Metelitsa <sup>50</sup>                      |
| A111 | NIPHENHCHD + NO <sub>2</sub> $\rightarrow$ 2,4-C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.00 \cdot 10^{7}$       |                       |                                      | est. according to Vione et al. <sup>85</sup> |
| A112 | 2 NIPHENHCHD $\rightarrow$ 4-C <sub>6</sub> H <sub>5</sub> NO <sub>4</sub> + 4-C <sub>6</sub> H <sub>5</sub> NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00·10 <sup>8</sup>      |                       | as HCHD, Mantaka et al. 51           | Metelitsa <sup>50</sup>                      |
| A113 | NICATHCHD + $O_2 \rightarrow NICATO2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2.00 \cdot 10^{6}$       |                       |                                      | PSSA Fang et al. <sup>76</sup>               |
| A114 | $2 \text{ NICATO2} \rightarrow 2 \text{ C}_4\text{H}_4\text{O}_4 + 2 \text{ NO}_2 + 2 \text{ C}_2\text{H}_2\text{O}_3 + 2 \text{ HO}_2 - 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.00.10^{6}$             |                       | yields recombination MCM             | Bräuer <sup>78</sup>                         |
|      | H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                       |                                      |                                              |
| A115 | $NICATO2 \rightarrow C_4H_4O_4 + NO_2 + C_2H_2O_2 + 2 HO_2 - H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2.00 \cdot 10^2$         |                       | yields est.                          | Bräuer <sup>78</sup>                         |
| A116 | NICRESHCHD + $O_2 \rightarrow 0.6$ NICRESO2 + 0.4 2- $C_7H_7NO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2.00.10^{6}$             |                       |                                      | PSSA Fang et al. <sup>76</sup>               |
|      | + 0.4 HO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                       |                                      |                                              |
| A117 | NICRESHCHD + $Fe^{3+} \rightarrow 2-C_7H_7NO_4 + Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $7.00 \cdot 10^3$         |                       |                                      | Metelitsa <sup>50</sup>                      |
| A118 | NICRESHCHD + NO <sub>2</sub> $\rightarrow$ 2,4-C <sub>7</sub> H <sub>6</sub> N <sub>2</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.00 \cdot 10^{7}$       |                       | as for NIPHENHCHD                    | est.                                         |
| A119 | $2 \text{ NICRESHCHD} \rightarrow 2\text{-}C_7\text{H}_7\text{NO}_4 + 2\text{-}C_7\text{H}_7\text{NO}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1.00.10^{8}$             |                       | as HCHD, Mantaka et al. 51           | Mvula et al. <sup>49</sup>                   |
| A120 | $2,4-C_7H_6N_2O_5 + h^{\mathcal{V}} \rightarrow 2-C_7H_7NO_4 + HONO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.675.10-06               | $\cos(\chi)^{0.846}$  | $exp(-0.096/cos(\chi))$              | est.                                         |
| A121 | $2,4-C_7H_5N_2O_5^- + h^{\nu} \rightarrow 2-C_7H_6NO_4^- + HONO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0·10 <sup>-05</sup> cos | $s(\chi)^{0.546} exp$ | $p(-0.117/\cos(\chi))$               | est.                                         |
| A122 | $2 \text{ NICRESO2} \rightarrow 2  C_5\text{H}_6\text{O}_3 + 2  C_2\text{H}_2\text{O}_2 + 2  \text{HO}_2 + 2  \text{NO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.00.10^{6}$             |                       | yields est.                          | Bräuer <sup>78</sup>                         |
| A123 | $NICRESO2 \rightarrow 0.4  C_5\text{H}_7\text{O}_2 + 0.2  C_5\text{H}_6\text{O}_3 + 0.6  C_2\text{H}_2\text{O}_2 + 0.2  C_5\text{H}_6\text{O}_3 + 0.6  C_5\text{H}_6\text{O}_3 + 0.6 $ | $2.00 \cdot 10^2$         |                       | yields est.                          | Bräuer <sup>78</sup>                         |
|      | $0.4 \ C_3 H_4 O_2 + 0.2 \ C_4 H_4 O_2 + 0.2 \ C_4 H_4 O_3 + 2 \ HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                       |                                      |                                              |
| A124 | $C_6H_5CH_2OH + OH \rightarrow 0.04 C_6H_5OH + 0.04 HCHO + 0.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.40·10 <sup>9</sup>      |                       |                                      | Steenken and Ramaraj <sup>19</sup>           |
|      | $ALKHCHD + 0.15 C_6H_5CHOH + 0.19 H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                       |                                      |                                              |
| A125 | $C_6H_5CH_2OH + NO_3 \rightarrow C_6H_5CHOH + NO_3^- + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.50 \cdot 10^{8}$       |                       |                                      | Ito et al. <sup>91</sup>                     |
| A126 | $C_6H_5CH_2OH + SO_4^- \rightarrow C_6H_5CH_2OH^+ + SO_4^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.20.109                  |                       |                                      | Steenken and Ramaraj <sup>19</sup>           |
| A127 | $\rm ALKHCHD + O_2 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.00 \cdot 10^{6}$       |                       | Steenken and Ramaraj <sup>19</sup> , | PSSA Fang et al. <sup>76</sup>               |
|      | $0.4 \text{ HOC}_6\text{H}_4\text{CH}_2\text{OH} + 0.4 \text{ HO}_2 + 0.6 \text{ ALKHCHDOX}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                       | Mantaka et al. 51                    |                                              |
| A128 | $ALKHCHD + Fe^{3+} \rightarrow HOC_6H_5CH_2OH + Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $7.00 \cdot 10^3$         |                       | Steenken and Ramaraj <sup>19</sup>   | Metelitsa <sup>50</sup>                      |

|      | Reaction                                                                                                                                                                                  | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment                               | Reference                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|---------------------------------------|------------------------------------|
| A129 | $2 \text{ ALKHCHD} \rightarrow C_6H_5CH_2OH + HOC_6H_4CH_2OH$                                                                                                                             | 1.00.108             |                    | as HCHD, Mantaka et al. 51            | Mvula et al. <sup>49</sup>         |
| A130 | $2 \text{ ALKHCHDOX} \rightarrow 1.2  \text{C}_2\text{H}_2\text{O}_2 + 0.8  \text{C}_5\text{H}_6\text{O}_3 + 0.4$                                                                         | 7.30·10 <sup>8</sup> |                    | yields analogy recombination          | Bräuer <sup>78</sup>               |
|      | $C_{5}H_{8}O_{4} + 0.8 C_{3}H_{4}O_{3} + 0.4 C_{4}H_{4}O_{2} + 0.4 C_{4}H_{4}O_{3} + 2 HO_{2}$                                                                                            |                      |                    | TLBIPERO2 in MCM                      |                                    |
| A131 | $\rm C_6H_5CH_2OH^+ \rightarrow C_6H_5CHOH + H^+$                                                                                                                                         | 5.00·10 <sup>7</sup> |                    | lower limit                           | Steenken and Ramaraj <sup>19</sup> |
| A132 | $C_6H_5CHOH + O_2 \rightarrow C_6H_5CHO + HO_2$                                                                                                                                           | 2.00·10 <sup>9</sup> |                    | CAPRAM Standard                       | Bräuer <sup>78</sup>               |
| A133 | $HOC_6H_4CH_2OH + OH \rightarrow 0.14 HOC_6H_4CHOH + 0.14 H_2O$                                                                                                                           | 5.27·10 <sup>9</sup> |                    |                                       | Dhiman and Naik 92                 |
|      | + 0.86 ALKOHHCHD                                                                                                                                                                          |                      |                    |                                       |                                    |
| A134 | $\mathrm{HOC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{Cl}_{2}^{-} \rightarrow \mathrm{ALKOHHCHD} + 2\ \mathrm{Cl}^{-} + \mathrm{H}^{+}$                                     | 2.80·10 <sup>8</sup> |                    | products est.                         | Dhiman and Naik 92                 |
| A135 | $HOC_6H_4CHOH + O_2 \rightarrow HOC_6H_4CHO + HO_2$                                                                                                                                       | 2.00.109             |                    | CAPRAM Standard                       | Bräuer <sup>78</sup>               |
| A136 | ALKOHHCHD + $O_2 \rightarrow$                                                                                                                                                             | $2.00.10^{6}$        |                    | Steenken and Ramaraj <sup>19</sup> ,  | PSSA Fang et al. <sup>76</sup>     |
|      | $0.4 (HO)_2C_6H_3CH_2OH + 0.4 HO_2 + 0.6 ALKOHHCHDOX$                                                                                                                                     |                      |                    | Mantaka et al. <sup>51</sup>          |                                    |
| A137 | ALKOHHCHD + $Fe^{3+} \rightarrow$                                                                                                                                                         | $7.00 \cdot 10^3$    |                    | Steenken and Ramaraj <sup>19</sup>    | Metelitsa <sup>50</sup>            |
|      | $0.4 (HO)_2 C_6 H_4 C H_2 O H + F e^{2+} + H^+$                                                                                                                                           |                      |                    |                                       |                                    |
| A138 | $2 \text{ ALKOHHCHD} \rightarrow C_6 \text{H}_5 \text{CH}_2 \text{OH} + (\text{HO})_2 \text{C}_6 \text{H}_4 \text{CH}_2 \text{OH}$                                                        | $1.00.10^{8}$        |                    | as HCHD, Mantaka et al. <sup>51</sup> | Mvula et al. <sup>49</sup>         |
| A139 | 2 ALKOHHCHDOX $\rightarrow$                                                                                                                                                               | 1.00.106             |                    | yields analogy recombination          | Tilgner and Herrmann <sup>77</sup> |
|      | $1.36  \mathrm{C_5H_6O_4} + 1.36  \mathrm{C_2H_2O_2} + 0.64  \mathrm{1,4\text{-}C_7H_6O_3} + 2  \mathrm{HO_2}$                                                                            |                      |                    | CRESO2 in MCM                         |                                    |
| A140 | ALKOHHCHDOX $\rightarrow 0.6 \text{ C}_2\text{H}_2\text{O}_2 + 0.4 \text{ C}_5\text{H}_6\text{O}_3 + 0.2$                                                                                 | 2.00·10 <sup>2</sup> |                    | HO <sub>2</sub> elimination           | Bräuer <sup>78</sup>               |
|      | $C_5H_8O_4 + 0.4\ C_3H_4O_3 + 0.2\ C_4H_4O_2 + 0.2\ C_4H_4O_3 + 2\ HO_2$                                                                                                                  |                      |                    |                                       |                                    |
| A141 | $(\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{OH} \rightarrow (\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{CHOH} + \mathrm{H}_{2}\mathrm{O}$ | 5.00·10 <sup>9</sup> |                    | est.                                  | est.                               |
| A142 | $(HO)_2C_6H_3CHOH + O_2 \rightarrow (HO)_2C_6H_3CHO + HO_2$                                                                                                                               | 2.00.109             |                    | CAPRAM Standard                       | Bräuer <sup>78</sup>               |
| A143 | $C_6H_5CHO + OH \rightarrow$                                                                                                                                                              | 2.60·10 <sup>9</sup> |                    | yields Sharma et al. 93               | Buxton et al. <sup>70</sup>        |
|      | $0.75 \text{ ALDHCHD} + 0.25 \text{ C}_6\text{H}_5\text{O}_2 + 0.25 \text{ H}_2\text{O} + 0.25 \text{ CO}$                                                                                |                      |                    |                                       |                                    |
| A144 | $C_6H_5CH(OH)_2 + OH \rightarrow C_6H_5C(OH)_2 + H_2O$                                                                                                                                    | 2.60·10 <sup>9</sup> |                    | yields Sharma et al. 93               | Buxton et al. <sup>70</sup>        |
| A145 | $C_6H_5CH(OH)_2 + NO_3 \rightarrow 0.8 \ C_6H_5C(OH)_2 + 0.8 \ H^+ + 0.2$                                                                                                                 | $7.10 \cdot 10^8$    |                    | yields Sharma et al. 93               | est. after Herrmann et al. 55      |
|      | $C_{6}H_{5}CH(OH)_{2}^{+} + NO_{3}^{-}$                                                                                                                                                   |                      |                    |                                       |                                    |
| A146 | $C_6H_5CH(OH)_2 + SO_4^- \rightarrow 0.8 \ C_6H_5C(OH)_2 + 0.8 \ H^+ + 0.2$                                                                                                               | $7.10 \cdot 10^8$    |                    | yields Sharma et al. 93               | Sharma et al. <sup>93</sup>        |
|      | $C_6H_5CH(OH)_2^+ + SO_4^{2-}$                                                                                                                                                            |                      |                    |                                       |                                    |
| A147 | ALDHCHD + $O_2 \rightarrow$                                                                                                                                                               | 2.00.106             |                    | yields Sharma et al. 93               | PSSA Fang et al. <sup>76</sup>     |

| 0.4 HOC <sub>4</sub> H <sub>2</sub> CHO + 0.4 HO <sub>2</sub> + 0.6 ALDHCHDOXA148ALDHCHD + Fe <sup>1+</sup> → HOC <sub>6</sub> H <sub>2</sub> CHO + Fe <sup>2+</sup> + H <sup>+</sup> 7.00·10 <sup>3</sup> yields Sharma et al. <sup>93</sup> Metelitsa <sup>90</sup> A1492 ALDHCHD → C <sub>4</sub> H <sub>2</sub> CHO + HOC <sub>6</sub> H <sub>4</sub> CHO1.00·10 <sup>6</sup> Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1502 ALDHCHDOX → 1.2 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.8 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.47.30·10 <sup>8</sup> yields analogy recombinationBräuer <sup>78</sup> A151C <sub>4</sub> H <sub>2</sub> CH(OH) <sub>2</sub> <sup>-</sup> → C <sub>6</sub> H <sub>5</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·10 <sup>7</sup> est. C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A151C <sub>4</sub> H <sub>5</sub> CH(OH) <sub>2</sub> + O → C <sub>6</sub> H <sub>4</sub> CO <sub>4</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A152C <sub>4</sub> H <sub>5</sub> C(OH) <sub>2</sub> + O → C <sub>6</sub> H <sub>4</sub> CO <sub>4</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> est. p-hydroxybenzaldehydeGeeta et al. <sup>94</sup> H <sub>5</sub> O + 0.67 ALDOHHCHDHOC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> NO <sub>7</sub> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeest. after Herrmann et al. <sup>55</sup> HOC <sub>4</sub> H <sub>4</sub> CHO + NO <sub>3</sub> → HOC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> NO <sub>7</sub> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeest. after Herrmann et al. <sup>55</sup> A155HOC <sub>4</sub> H <sub>4</sub> CHO + NO <sub>7</sub> → HOC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> SO <sub>2</sub> <sup>2</sup> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeest. after Herrmann et al. <sup>55</sup> A156HOC <sub>6</sub> H <sub>4</sub> CHO(H) <sub>2</sub> + SO <sub>4</sub> → OC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> SO <sub>4</sub> <sup>2</sup> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeest. after Herrmann et al. <sup>55</sup> A158HOC <sub>6</sub> H <sub>4</sub> CHO(H) <sub>2</sub> + SO <sub>4</sub> → OC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> SO <sub>4</sub> <sup>2</sup> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeest after Herrmann et al. <sup>55</sup> A157HOC <sub>6</sub> H <sub>4</sub> CHO(H) <sub>2</sub> + SO <sub>4</sub> → OC <sub>6</sub> H <sub>4</sub> CHO(H) <sub>2</sub> + H <sup>+</sup> 5.00·10 <sup>7</sup> est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> O <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A161HOC <sub>6</sub> H <sub>4</sub>                                                                                                                |      | Reaction                                                                                                                                                                                          | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment                                                            | Reference                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|--------------------------------------------------------------------|------------------------------------|
| A148ALDHCHD + $Fe^{2s} \rightarrow HOC_6H_4CHO + Fe^{2s} + H^*$ 7.00·10 <sup>3</sup> yields Sharma et al. <sup>93</sup> Metelitsa <sup>30</sup> A1492 ALDHCHD $\rightarrow C_4H_4CHO + HOC_4H_4CHO1.00·108Mantak at al. 51Mvula et al. 49A1502 ALDHCHDOX \rightarrow 1.2 C_{2H_2O_2} + 0.8 C_{4H_QO_1} + 0.47.30·108yields analogy recombinationBräuer 78A151C_{6H_3CH(OH)_2} + 0.4 C_{4H_QO_2} + 0.4 C_{4H_QO_1} + 2 HO_2TIBIPERO2 in MCMTIBIPERO2Steenken and Ramaraj 10A151C_{6H_3CH(OH)_2} + 0.2 \rightarrow C_{6H_3CH(OH)_2} + H^+5.00·107est. C_{6H_3CH_2OH^+}Steenken and Ramaraj 10A152C_{4H_3C(OH) + OH \rightarrow 0.33 HOC_{6H_2O_2} + 0.33 CO + 0.331.21·1010est. p-hydroxybenzaldehydeGecta et al. 94A153HOC_{6H_4CH(OH)_2 + OH \rightarrow 0.33 HOC_{6H_4CH(OH)_2}1.21·1010est. p-hydroxybenzaldehydeest. after Herrmann et al. 55A154HOC_{6H_4CH(OH)_2 + NO_3 \rightarrow HOC_{6H_4CH(OH)_2^+ + NO_3^-5.90·109est. p-hydroxybenzaldehydeest. after Herrmann et al. 55A155HOC_{4H_4CH(OH)_2 + NO_3 \rightarrow HOC_{6H_4CH(OH)_2^+ + SO_4^{-2}5.90·109est. p-hydroxybenzaldehydeGecta et al. 94A158HOC_{6H_4CH(OH)_2 + SO_4^- \rightarrow HOC_{6H_4CH(OH)_2^+ + SO_4^{-2}5.90·109est. C_{6H_5CHO^+ SO_4^- SUPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | $0.4 \text{ HOC}_6\text{H}_4\text{CHO} + 0.4 \text{ HO}_2 + 0.6 \text{ ALDHCHDOX}$                                                                                                                |                      |                    |                                                                    |                                    |
| A1492 ALDHCHD → C <sub>6</sub> H <sub>5</sub> CHO + HOC <sub>6</sub> H <sub>4</sub> CHO1.00·10 <sup>8</sup> Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1502 ALDHCHDOX → 1.2 C <sub>5</sub> H <sub>5</sub> O <sub>2</sub> + 0.8 C <sub>5</sub> H <sub>4</sub> O <sub>2</sub> + 0.47.30·10 <sup>8</sup> yields analogy recombinationBräuer <sup>78</sup> C <sub>5</sub> H <sub>6</sub> O <sub>4</sub> + 0.8 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.4 C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> + 0.4 C <sub>4</sub> H <sub>4</sub> O <sub>3</sub> + 2.04TLBIPERO2 in MCMSteenken and Ramaraj <sup>19</sup> A151C <sub>6</sub> H <sub>5</sub> C(OH) <sub>2</sub> + O <sub>2</sub> → C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A153HOC <sub>6</sub> H <sub>4</sub> CHO + OH → 0.33 HOC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> + 0.33 CO + 0.331.21·10 <sup>10</sup> est. p-hydroxybenzaldehydeGeeta et al. <sup>94</sup> A154HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + OH → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.21·10 <sup>10</sup> est. p-hydroxybenzaldehydeest. after Herrmann et al. <sup>55</sup> A156HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + NO <sub>3</sub> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + NO <sub>5</sub> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeGeeta et al. <sup>94</sup> A155HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + NO <sub>3</sub> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + NO <sub>5</sub> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeGeeta et al. <sup>54</sup> A156HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + SO <sub>4</sub> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + SO <sub>4</sub> <sup>2-</sup> 5.90·10 <sup>9</sup> est. p-hydroxybenzaldehydeGeeta et al. <sup>94</sup> A158HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + SO <sub>4</sub> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·10 <sup>7</sup> est. C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A160HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + SO <sub>4</sub> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·10 <sup>7</sup> est. C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A161HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + OC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·10 <sup>7</sup> est. C <sub>4</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A161HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + OC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO2.00·10 <sup></sup> | A148 | ALDHCHD + $Fe^{3+} \rightarrow HOC_6H_4CHO + Fe^{2+} + H^+$                                                                                                                                       | $7.00 \cdot 10^3$    |                    | yields Sharma et al. 93                                            | Metelitsa <sup>50</sup>            |
| A1502 ALDHCHDOX → 1.2 $C_2H_2O_2 + 0.8 C_3H_4O_3 + 0.4$ 7.30·108yields analogy recombinationBräuer 78C_4H_O1 + 0.8 C_4H_4O + 0.4 C_4H_4O_2 + 0.4 C_4H_4O_3 + 2 HO2TLBIPERO2 in MCMA151C_6H_5C(HO)L_2 + $\rightarrow C_{eH_5CH}(OH)_2 + H^{+}$ 5.00·107Call F2C_6H_5C(HO)L_2 + 0.2 → C_6H_5CO_2H + HO22.00·109CAPRAM StandardBräuer 78A153HOC_4H_4CH(OH) + 0 + $\rightarrow 0.33 \text{ HOC}_{eH_4O_2} + 0.33 \text{ CO} + 0.33$ 1.21·10 <sup>10</sup> A154HOC_4H_4CH(OH)_2 + H → HOC_6H_4CH(OH)_21.21·10 <sup>10</sup> A155HOC_6H_4CH(OH)_2 + NO → HOC_6H_4CH(OH)_25.90·109A156HOC_6H_4CH(OH)_2 + NO_3 → HOC_6H_4CH(OH)_2 + NO_35.90·109A157HOC_6H_4CH(OH)_2 + SO_4 → HOC_6H_4CH(OH)_2 + SO_2 - 5.90·109A158HOC_6H_4CH(OH)_2 + SO_4 → HOC_6H_4CH(OH)_2 + SO_4 - 5.90·109A159HOC_6H_4CH(OH)_2 + SO_4 - HOC_6H_4CH(OH)_2 + SO_4 - 5.90·109A159HOC_6H_4CH(OH)_2 + O_2 - HOC_6H_4CH(OH)_2 + H^+5.00·107est. c_H_5CH_2OH^+Steenken and Ramaraj <sup>19</sup> A161HOC_6H_4CH(OH)_2 + O_2 - HOC_6H_4CH(OH)_2 + H^+5.00·107est. C_4H_5CH_2OH^+Steenken and Ramaraj <sup>19</sup> A163ALDOHHCHD + O_2 → EOC_6H_4COH_2H + HO22.00·106Geeta et al. <sup>94</sup> A163ALDOHHCHD + SO_4 - HOC_6H_4CH(OH)_2 + H^+3.100·107est. C_4H_5CH_2OH^+3.12Steenken and Ramaraj <sup>19</sup> 3.161HOC_6H_4CH(OH)_2 + O_2 + HOC_6H_4CH(OH)_2 + H^+3.162ALDOHHCHD + O_2 → EOC_6H_4CD_2H_1 + D_23.161HOC_6H_4CH(OH)_2 + O_2 + HOC_6H_4CH(OH)_2 + H^+ <td>A149</td> <td>2 ALDHCHD <math>\rightarrow</math> C<sub>6</sub>H<sub>5</sub>CHO + HOC<sub>6</sub>H<sub>4</sub>CHO</td> <td><math>1.00.10^{8}</math></td> <td></td> <td>Mantaka et al. <sup>51</sup></td> <td>Mvula et al. 49</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A149 | 2 ALDHCHD $\rightarrow$ C <sub>6</sub> H <sub>5</sub> CHO + HOC <sub>6</sub> H <sub>4</sub> CHO                                                                                                   | $1.00.10^{8}$        |                    | Mantaka et al. <sup>51</sup>                                       | Mvula et al. 49                    |
| $ \begin{array}{cccc} C_{3}H_{6}O_{4} + 0.8 \ C_{3}H_{4}O_{3} + 0.4 \ C_{4}H_{4}O_{2} + 0.4 \ C_{4}H_{4}O_{3} + 2 \ HO_{2} \\ A151 \\ C_{4}H_{5}C(HOH)_{2}^{-} \rightarrow C_{4}H_{5}C(HOH)_{2}^{+} + H^{+} \\ 5.00^{-}10^{7} \\ est. \ C_{6}H_{5}C(HOH)_{2}^{-} + O_{2} \rightarrow C_{6}H_{5}CO_{2}H + HO_{2} \\ C_{6}H_{5}C(OH)_{2}^{+} + O_{2} \rightarrow C_{6}H_{5}CO_{2}H + HO_{2} \\ C_{6}H_{5}C(OH)_{2}^{+} + O_{2} \rightarrow C_{6}H_{5}CO_{2}H + HO_{2} \\ C_{6}H_{5}C(HOH)_{2}^{+} + O_{1} \rightarrow 0.33 \ HOC_{6}H_{4}O_{2}^{+} + 0.33 \ CO + 0.33 \\ H_{2}O + 0.67 \ ALDOHHCHD \\ H_{2}O + 0.67 \ ALDOHHCHD \\ \end{array} \\ \begin{array}{c} A154 \\ HOC_{6}H_{4}CH(OH)_{2} + OH \rightarrow HOC_{6}H_{4}CH(OH)_{2} \\ H_{2}O + 0.67 \ ALDOHHCHD \\ A155 \\ HOC_{6}H_{4}CH(OH)_{2} + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{+} + NO_{5}^{-} \\ 5.90^{-}10^{9} \\ est. \ p-hydroxybenzaldehyde \\ est. after Herrmann et al. ^{55} \\ est. after Herrmann et al. ^{55} \\ HOC_{6}H_{4}CH(OH)_{2} + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{+} + SO_{4}^{-2} \\ 5.90^{-}10^{9} \\ est. \ p-hydroxybenzaldehyde \\ Geeta et al. ^{94} \\ Geeta et al.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A150 | $2 \text{ ALDHCHDOX} \rightarrow 1.2  \text{C}_2\text{H}_2\text{O}_2 + 0.8  \text{C}_5\text{H}_4\text{O}_3 + 0.4$                                                                                 | 7.30.108             |                    | yields analogy recombination                                       | Bräuer <sup>78</sup>               |
| A151 $C_6H_5CH(OH)_2^+ \rightarrow C_6H_5CH(OH)_2 + H^+$ $5.00\cdot10^7$ est. $C_6H_5CH_2OH^+$ Steenken and Ramaraj $^{19}$ A152 $C_6H_5C(OH)_2 + O_2 \rightarrow C_6H_5CO_2H + HO_2$ $2.00\cdot10^9$ $CAPRAM$ StandardBräuer $^{78}$ A153 $HOC_6H_4CHO + OH \rightarrow 0.33$ $HOC_8H_4O_2 + 0.33$ $CO + 0.33$ $1.21\cdot10^{10}$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A154 $HOC_6H_4CH(OH)_2 + OH \rightarrow HOC_6H_4CH(OH)_2$ $1.21\cdot10^{10}$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A155 $HOC_6H_4CH(OH)_2 + OA \rightarrow HOC_6H_4CH(OH)_2 + NO_3^ 5.90\cdot10^9$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A155 $HOC_6H_4CH(OH)_2 + NO_3 \rightarrow HOC_6H_4CH(OH)_2^+ + NO_3^ 5.90\cdot10^9$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A158 $HOC_6H_4CH(OH)_2 + SO_4^- \rightarrow HOC_6H_4CH(OH)_2^+ + SO_4^{-2}$ $5.90\cdot10^9$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A158 $HOC_6H_4CH(OH)_2 + SO_4^- \rightarrow HOC_6H_4CH(OH)_2^+ + SO_4^{-2}$ $5.90\cdot10^9$ est. $p$ -hydroxybenzaldehydeGeeta et al. $^{94}$ A159 $HOC_6H_4CH(OH)_2 + OC_4H_4CH(OH)_2^+ + H^+$ $5.00\cdot10^7$ est. $C_6H_5CH_2OH^+$ Steenken and Ramaraj $^{19}$ A161 $HOC_6H_4CH(OH)_2 + O_2 \rightarrow HOC_6H_4CD(O_2H + H^+)$ $2.00\cdot10^9$ CAPRAM StandardBräuer $^{78}$ A162ALDOHHCHD $+ O_2 \rightarrow 0.6$ $ALDOHHCHDOX$ $AIDOHHCHDOX \rightarrow 0.6$ $AIDOHHCHD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $C_{5}H_{6}O_{4} + 0.8 C_{3}H_{4}O_{3} + 0.4 C_{4}H_{4}O_{2} + 0.4 C_{4}H_{4}O_{3} + 2 HO_{2}$                                                                                                    |                      |                    | TLBIPERO2 in MCM                                                   |                                    |
| A152 $C_{e}H_{5}C(OH)_{2} + O_{2} \rightarrow C_{e}H_{5}CO_{2}H + HO_{2}$ $2.00 \cdot 10^{9}$ CAPRAM StandardBräuer 78A153 $HOC_{e}H_{4}CHO + OH \rightarrow 0.33 HOC_{e}H_{4}O_{2} + 0.33 CO + 0.33$ $1.21 \cdot 10^{10}$ est. p-hydroxybenzaldehydeGeeta et al. 94A154 $HOC_{e}H_{4}CH(OH)_{2} + OH \rightarrow HOC_{e}H_{4}CH(OH)_{2}$ $1.21 \cdot 10^{10}$ est. p-hydroxybenzaldehydeGeeta et al. 94A154 $HOC_{e}H_{4}CH(OH)_{2} + OH \rightarrow HOC_{e}H_{4}CH(OH)_{2}$ $1.21 \cdot 10^{10}$ est. p-hydroxybenzaldehydeGeeta et al. 94A155 $HOC_{4}H_{4}CH(OH)_{2} + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{*} + NO_{3}^{*}$ $5.90 \cdot 10^{9}$ est. p-hydroxybenzaldehydeest. after Herrmann et al. 55A156 $HOC_{6}H_{4}CH(OH)_{2} + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{*} + SO_{4}^{2*}$ $5.90 \cdot 10^{9}$ est. p-hydroxybenzaldehydeGeeta et al. 94A158 $HOC_{6}H_{4}CH(OH)_{2} + SO_{4} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{*} + SO_{4}^{2*}$ $5.90 \cdot 10^{9}$ est. p-hydroxybenzaldehydeGeeta et al. 94A159 $HOC_{6}H_{4}CH(OH)_{2} + SO_{4} \rightarrow HOC_{6}H_{4}CH(OH)_{2} + H^{*}$ $5.00 \cdot 10^{7}$ est. $C_{6}H_{5}CH_{2}OH^{*}$ Steenken and Ramaraj 19A160 $HOC_{6}H_{4}CH(OH)_{2} + O + HC_{6}H_{4}CH(OH)_{2} + H^{*}$ $5.00 \cdot 10^{7}$ est. $C_{6}H_{5}CH_{2}OH^{*}$ Steenken and Ramaraj 19A161 $HOC_{6}H_{4}CH(OH)_{2} + O + OA_{6}H_{4}CO_{2}H + HO_{2}$ $2.00 \cdot 10^{9}$ CAPRAM StandardBräuer 78A162ALDOHHCHD $+ O_{2} \rightarrow HOC_{6}H_{4}CHO + Fe^{2*} + H^{*}$ $7.00 \cdot 10^{3}$ Sharma et al. 93Metelitsa 50A1642 ALDOHHCHD $+ O_{2} \rightarrow OA_{2}H_{4}O_{7}H_{0}O_{2} + 2 HO_{2}$ $1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A151 | $C_6H_5CH(OH)_2^+ \rightarrow C_6H_5CH(OH)_2 + H^+$                                                                                                                                               | 5.00.107             |                    | est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> | Steenken and Ramaraj 19            |
| $ \begin{array}{cccc} A153 & HOC_{6}H_{4}CHO + OH \rightarrow 0.33 & HOC_{6}H_{4}O_{2} + 0.33 & CO + 0.33 & 1.21 \cdot 10^{10} \\ H_{2}O + 0.67 & ALDOHHCHD \\ \end{array} \\ \begin{array}{c} A154 & HOC_{4}H_{4}CH(OH)_{2} + OH \rightarrow HOC_{6}H_{4}CH(OH)_{2} & 1.21 \cdot 10^{10} \\ A155 & HOC_{6}H_{4}CH(OH)_{2} + OH \rightarrow HOC_{6}H_{4}CH(OH)_{2} & 1.21 \cdot 10^{10} \\ A155 & HOC_{6}H_{4}CHO + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2} & + NO_{3} & 5.90 \cdot 10^{9} \\ A156 & HOC_{6}H_{4}CH(OH)_{2} + NO_{3} \rightarrow HOC_{6}H_{4}CH(OH)_{2} & + NO_{3} & 5.90 \cdot 10^{9} \\ A157 & HOC_{6}H_{4}CHO + SO_{4} \rightarrow HOC_{6}H_{4}CH(O+) & SO_{4}^{-2} & 5.90 \cdot 10^{9} \\ A158 & HOC_{4}H_{4}CHO + SO_{4} \rightarrow HOC_{6}H_{4}CH(O+)_{2} & + SO_{4}^{-2} & 5.90 \cdot 10^{9} \\ A159 & HOC_{6}H_{4}CHO + DC_{6}H_{4}CH(OH)_{2} & + SO_{4}^{-2} & 5.90 \cdot 10^{7} \\ A160 & HOC_{6}H_{4}CH(OH)_{2} & + OC_{6}H_{4}CH(OH)_{2} & + H^{+} & 5.00 \cdot 10^{7} \\ A161 & HOC_{6}H_{4}CH(OH)_{2} & - \rightarrow HOC_{6}H_{4}CH(OH)_{2} & + H^{+} & 5.00 \cdot 10^{7} \\ A161 & HOC_{6}H_{4}CH(OH)_{2} & - \rightarrow HOC_{6}H_{4}CH(OH)_{2} & + H^{+} & 5.00 \cdot 10^{7} \\ A161 & HOC_{6}H_{4}CHO + 0.4 & HO_{2} & + 0.6 & ALDOHHCHDOX \\ \end{array} \\ A163 & ALDOHHCHD + O_{2} \rightarrow HOC_{6}H_{4}CHO + Fe^{2+} + H^{+} & 7.00 \cdot 10^{3} \\ A164 & 2 & ALDOHHCHD + Fe^{3} \rightarrow (HO)_{2}C_{6}H_{4}CHO & + Fe^{2+} + H^{+} & 7.00 \cdot 10^{3} \\ A164 & 2 & ALDOHHCHD \rightarrow HOC_{6}H_{5}CHO + (HO)_{2}C_{6}H_{4}CHO & 1.00 \cdot 10^{8} \\ A165 & 2 & ALDOHHCHDOX \rightarrow & 1.00 \cdot 10^{6} \\ A166 & ALDOHHCHDOX \rightarrow 0.6 & C_{2}H_{2}O_{2} + 0.64 & 1.4C_{7}H_{4}O_{3} + 2 & HO_{2} \\ A166 & ALDOHHCHDOX \rightarrow 0.6 & C_{2}H_{2}O_{2} + 0.64 & C_{3}H_{4}O_{3} + 0.2 & C_{4}HO_{3} + 2 & HO_{2} \\ A166 & ALDOHHCHDOX \rightarrow 0.6 & C_{2}H_{2}O_{2} + 0.64 & C_{3}H_{4}O_{3} + 0.2 & C_{4}H_{0}O_{3} + 2 & HO_{2} \\ A166 & (HO)_{2}C_{6}H_{5}CH(OH)_{2} & CO_{4}H_{0}O_{3} + 2 & HO_{2} \\ A166 & (HO)_{2}C_{6}H_{5}CH(OH)_{2} & C_{4}H_{0}O_{3} + 2 & HO_{2} \\ A166 & (HO)_{2}C_{6}H_{5}CH(OH)_{2} & C_{4}H_{0}O_{3} + 2 & HO_{2} \\ A166 & (HO)_{2}C_{6}H_{5}CH(OH)_{2} & C_{4}H_{0}O_{3} + 2 & HO_{2} \\ A168 & (HO)_{2}C_{6}H_{5}CH(OH)_{2} & C_{4}H_{0}O_{2}C_{4}H_{0}OH_{2} \\ B7aue 7^{8} \\ A169 & C_{4}H_{C}OH_{1}OH & OHO_{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A152 | $C_6H_5C(OH)_2 + O_2 \rightarrow C_6H_5CO_2H + HO_2$                                                                                                                                              | 2.00.109             |                    | CAPRAM Standard                                                    | Bräuer <sup>78</sup>               |
| $ \begin{array}{cccc} H_2O + 0.67 \mbox{ ALDOHHCHD} \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A153 | $HOC_6H_4CHO + OH \rightarrow 0.33 HOC_6H_4O_2 + 0.33 CO + 0.33$                                                                                                                                  | $1.21 \cdot 10^{10}$ |                    | est. p-hydroxybenzaldehyde                                         | Geeta et al. <sup>94</sup>         |
| A154HOC_6H_4CH(OH)_2 + OH $\rightarrow$ HOC_6H_4CH(OH)_21.21 \cdot 10^{10}est. p-hydroxybenzaldehydeGeeta et al. $^{94}$ A155HOC_6H_4CHO + NO_3 $\rightarrow$ HOC_6H_4CH(OH)_2 + NO_3 $\rightarrow$ 5.90 \cdot 10^9est. p-hydroxybenzaldehydeest. after Herrmann et al. $^{55}$ A156HOC_6H_4CH(OH)_2 + NO_3 $\rightarrow$ HOC_6H_4CH(OH)_2 + NO_3 $\rightarrow$ 5.90 \cdot 10^9est. p-hydroxybenzaldehydeest. after Herrmann et al. $^{55}$ A157HOC_6H_4CH(OH) + SO_4 $\rightarrow$ HOC_6H_4CH(OH)_2 + SO_4 $\rightarrow$ 5.90 \cdot 10^9est. p-hydroxybenzaldehydeGeeta et al. $^{94}$ A158HOC_6H_4CH(OH) + SO_4 $\rightarrow$ HOC_6H_4CH(OH)_2 + SO_4 $\rightarrow$ 5.90 \cdot 10^9est. p-hydroxybenzaldehydeGeeta et al. $^{94}$ A159HOC_6H_4CH(OH) + SO_4 $\rightarrow$ HOC_6H_4CH(OH)_2 + SO_4 $\rightarrow$ 5.90 \cdot 10^9est. p-hydroxybenzaldehydeGeeta et al. $^{94}$ A159HOC_6H_4CH(OH) $\rightarrow$ HOC_6H_4CH(OH)_2 + H*5.00 \cdot 10^7est. C_6H_5CH_2OH*Steenken and Ramaraj $^{19}$ A160HOC_6H_4CH(OH)_2 $\rightarrow$ HOC_6H_4CH(OH)_2 + H*5.00 \cdot 10^7est. C_6H_5CH_2OH*Steenken and Ramaraj $^{19}$ A161HOC_6H_4CH(OH)_2 $\rightarrow$ HOC_6H_4CHOH + HO_22.00 \cdot 10^6Geeta et al. $^{94}$ Bräuer $^{78}$ A162ALDOHHCHD $\rightarrow$ O_2 $\rightarrow$ 2.00 \cdot 10^6Geeta et al. $^{91}$ Mula et al. $^{90}$ A163ALDOHHCHD $\rightarrow$ HOC_6H_5CHO $+$ (HO)2C_6H_4CHO1.00 \cdot 10^8Mantaka et al. $^{91}$ Mula et al. $^{49}$ A1642 ALDOHHCHD $\rightarrow$ HOC_6H_5CHO $+$ (HO)2C_6H_4CHO1.00 \cdot 10^8Mantaka et al. $^{51}$ Mvula et al. $^{49}$ A1652 ALDOHHCHDOX $\rightarrow$ 1.00 \cdot 10^6yields analogy recombinationTigner and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $H_2O + 0.67$ ALDOHHCHD                                                                                                                                                                           |                      |                    |                                                                    |                                    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A154 | $HOC_6H_4CH(OH)_2 + OH \rightarrow HOC_6H_4CH(OH)_2$                                                                                                                                              | $1.21 \cdot 10^{10}$ |                    | est. p-hydroxybenzaldehyde                                         | Geeta et al. <sup>94</sup>         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A155 | $HOC_6H_4CHO + NO_3 \rightarrow HOC_6H_4CHO^+ + NO_3^-$                                                                                                                                           | 5.90·10 <sup>9</sup> |                    | est. p-hydroxybenzaldehyde                                         | est. after Herrmann et al. 55      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A156 | $HOC_6H_4CH(OH)_2 + NO_3 \rightarrow HOC_6H_4CH(OH)_2^+ + NO_3^-$                                                                                                                                 | 5.90·10 <sup>9</sup> |                    | est. p-hydroxybenzaldehyde                                         | est. after Herrmann et al. 55      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A157 | $HOC_6H_4CHO + SO_4^- \rightarrow HOC_6H_4CHO^+ + SO_4^{2-}$                                                                                                                                      | 5.90·10 <sup>9</sup> |                    | est. p-hydroxybenzaldehyde                                         | Geeta et al. <sup>94</sup>         |
| A159HOC <sub>6</sub> H <sub>4</sub> CHO <sup>+</sup> → HOC <sub>6</sub> H <sub>4</sub> O <sub>2</sub> + CO + H <sup>+</sup> 5.00·107est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A160HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·107est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A161HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → HOC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·109CAPRAM StandardBräuer <sup>78</sup> A162ALDOHHCHD + O <sub>2</sub> →2.00·106Geeta et al. <sup>94</sup> PSSA Fang et al. <sup>76</sup> 0.4 (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CHO + 0.4 HO <sub>2</sub> + 0.6 ALDOHHCHDOXA163ALDOHHCHD + Fe <sup>3+</sup> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO + Fe <sup>2+</sup> + H <sup>+</sup> 7.00·10 <sup>3</sup> Sharma et al. <sup>93</sup> Metelitsa <sup>50</sup> A1642 ALDOHHCHD → HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO1.00·108Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1652 ALDOHHCHDOX →1.00·106yields analogy recombinationTilgner and Herrmann <sup>77</sup> 1.36 C <sub>5</sub> H <sub>4</sub> O <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 2.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> A164ALDOHHCHDOX → 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.22.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> A166ALDOHHCHDOX → 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.2 C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 1.00·10 <sup>10</sup> est.est.est.A167(HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.est.est.A168(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·109CAPRAM StandardBräuer <sup>78</sup> A169C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + OH → ACIDHCHD1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                              | A158 | $HOC_{6}H_{4}CH(OH)_{2} + SO_{4}^{-} \rightarrow HOC_{6}H_{4}CH(OH)_{2}^{+} + SO_{4}^{2-}$                                                                                                        | 5.90·10 <sup>9</sup> |                    | est. p-hydroxybenzaldehyde                                         | Geeta et al. <sup>94</sup>         |
| A160HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> <sup>+</sup> → HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + H <sup>+</sup> 5.00·107est. C <sub>6</sub> H <sub>3</sub> CH <sub>2</sub> OH <sup>+</sup> Steenken and Ramaraj <sup>19</sup> A161HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → HOC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·109CAPRAM StandardBräuer <sup>78</sup> A162ALDOHHCHD + O <sub>2</sub> →2.00·106Geeta et al. <sup>94</sup> PSSA Fang et al. <sup>76</sup> 0.4 (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CHO + 0.4 HO <sub>2</sub> + 0.6 ALDOHHCHDOXA163ALDOHHCHD + Fe <sup>3+</sup> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO + Fe <sup>2+</sup> + H <sup>+</sup> 7.00·103Sharma et al. <sup>93</sup> Metelitsa <sup>50</sup> A1642 ALDOHHCHD → HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO1.00·108Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1652 ALDOHHCHDOX →1.00·106yields analogy recombinationTilgner and Herrmann <sup>77</sup> 1.36 C <sub>3</sub> H <sub>4</sub> O <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> CRESO2 in MCMBräuer <sup>78</sup> A164ALDOHHCHDOX → 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.22.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> A167(HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.est.est.A168(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> CH + HO <sub>2</sub> 2.00·109CAPRAM StandardBräuer <sup>78</sup> A169C <sub>6</sub> H <sub>5</sub> CO <sub>3</sub> H + OH → ACIDHCHD1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A159 | $HOC_6H_4CHO^+ \rightarrow HOC_6H_4O_2 + CO + H^+$                                                                                                                                                | 5.00.107             |                    | est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> | Steenken and Ramaraj <sup>19</sup> |
| A161HOC <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → HOC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A162ALDOHHCHD + O <sub>2</sub> →2.00·10 <sup>6</sup> Geeta et al. <sup>94</sup> PSSA Fang et al. <sup>76</sup> 0.4 (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CHO + 0.4 HO <sub>2</sub> + 0.6 ALDOHHCHDOXA163ALDOHHCHD + Fe <sup>3+</sup> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO + Fe <sup>2+</sup> + H <sup>+</sup> 7.00·10 <sup>3</sup> Sharma et al. <sup>93</sup> Metelitsa <sup>50</sup> A1642 ALDOHHCHD → HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO1.00·10 <sup>8</sup> Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1652 ALDOHHCHDOX →1.00·10 <sup>6</sup> yields analogy recombinationTilgner and Herrmann <sup>77</sup> 1.36 C <sub>5</sub> H <sub>4</sub> O <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> CRESO2 in MCMBräuer <sup>78</sup> A166ALDOHHCHDOX → 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>5</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 2.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> A167(HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.est.est.A168(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> → (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A169C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + OH → ACIDHCHD1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A160 | $HOC_6H_4CH(OH)_2^+ \rightarrow HOC_6H_4CH(OH)_2 + H^+$                                                                                                                                           | 5.00.107             |                    | est. C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH <sup>+</sup> | Steenken and Ramaraj <sup>19</sup> |
| A162       ALDOHHCHD + $O_2 \rightarrow$ 2.00·10 <sup>6</sup> Geeta et al. <sup>94</sup> PSSA Fang et al. <sup>76</sup> A163       ALDOHHCHD + $Fe^{3+} \rightarrow (HO)_2C_6H_4CHO + Fe^{2+} + H^+$ 7.00·10 <sup>3</sup> Sharma et al. <sup>93</sup> Metelitsa <sup>50</sup> A164       2 ALDOHHCHD $\rightarrow$ HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO       1.00·10 <sup>8</sup> Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A165       2 ALDOHHCHDOX $\rightarrow$ 1.00·10 <sup>6</sup> yields analogy recombination       Tilgner and Herrmann <sup>77</sup> 1.36 C <sub>5</sub> H <sub>4</sub> Q <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> CRESO2 in MCM       Tilgner and Herrmann <sup>77</sup> A166       ALDOHHCHDOX $\rightarrow$ 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.2       2.00·10 <sup>2</sup> HO <sub>2</sub> elimination       Bräuer <sup>78</sup> A167       (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.       est.         A168       (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM Standard       Bräuer <sup>78</sup> A169       C <sub>6</sub> H <sub>5</sub> CO <sub>3</sub> H + OH $\rightarrow$ ACIDHCHD       1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A161 | $HOC_6H_4CH(OH)_2 + O_2 \rightarrow HOC_6H_4CO_2H + HO_2$                                                                                                                                         | $2.00 \cdot 10^{9}$  |                    | CAPRAM Standard                                                    | Bräuer <sup>78</sup>               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A162 | ALDOHHCHD + $O_2 \rightarrow$                                                                                                                                                                     | $2.00 \cdot 10^{6}$  |                    | Geeta et al. <sup>94</sup>                                         | PSSA Fang et al. <sup>76</sup>     |
| A163ALDOHHCHD + Fe3+ $\rightarrow$ (HO)2C6H4CHO + Fe2+ H+7.00·103Sharma et al. 93Metelitsa 50A1642 ALDOHHCHD $\rightarrow$ HOC6H5CHO + (HO)2C6H4CHO1.00·108Mantaka et al. 51Mvula et al. 49A1652 ALDOHHCHDOX $\rightarrow$ 1.00·106yields analogy recombinationTilgner and Herrmann 771.36 C5H4O4 + 1.36 C2H2O2 + 0.64 1,4-C7H4O3 + 2 HO2CRESO2 in MCMBräuer 78A166ALDOHHCHDOX $\rightarrow$ 0.6 C2H2O2 + 0.4 C5H4O3 + 0.22.00·102HO2 eliminationBräuer 78C5H6O4 + 0.4 C3H4O3 + 0.2 C4H4O2 + 0.2 C4H6O3 + 2 HO21.00·10 <sup>10</sup> est.est.est.A167(HO)2C6H3CH(OH)2 + OH $\rightarrow$ (HO)2C6H4CH(OH)21.00·10 <sup>10</sup> CAPRAM StandardBräuer 78A168(HO)2C6H4CH(OH)2 + O2 $\rightarrow$ (HO)2C6H4CO2H + HO22.00·109CAPRAM StandardBräuer 78A169C6H5CO2H + OH $\rightarrow$ ACIDHCHD1.80·109Remucal and Manley 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 0.4 (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CHO + 0.4 HO <sub>2</sub> + 0.6 ALDOHHCHDOX                                                                                                   |                      |                    |                                                                    |                                    |
| A1642 ALDOHHCHD $\rightarrow$ HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO1.00·10 <sup>8</sup> Mantaka et al. <sup>51</sup> Mvula et al. <sup>49</sup> A1652 ALDOHHCHDOX $\rightarrow$ 1.00·10 <sup>6</sup> yields analogy recombinationTilgner and Herrmann <sup>77</sup> 1.36 C <sub>5</sub> H <sub>4</sub> O <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> CRESO2 in MCMTilgner and Herrmann <sup>77</sup> A166ALDOHHCHDOX $\rightarrow$ 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>5</sub> H <sub>4</sub> O <sub>3</sub> + 0.22.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> C <sub>5</sub> H <sub>6</sub> O <sub>4</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.2 C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> + 0.2 C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 1.00·10 <sup>10</sup> est.est.est.A167(HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.CAPRAM StandardBräuer <sup>78</sup> A168(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 1.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A169C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + OH $\rightarrow$ ACIDHCHD1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A163 | ALDOHHCHD + $Fe^{3+} \rightarrow (HO)_2C_6H_4CHO + Fe^{2+} + H^+$                                                                                                                                 | $7.00 \cdot 10^3$    |                    | Sharma et al. <sup>93</sup>                                        | Metelitsa 50                       |
| A1652 ALDOHHCHDOX $\rightarrow$ 1.00·10 <sup>6</sup> yields analogy recombinationTilgner and Herrmann 771.36 C <sub>5</sub> H <sub>4</sub> O <sub>4</sub> + 1.36 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.64 1,4-C <sub>7</sub> H <sub>4</sub> O <sub>3</sub> + 2 HO <sub>2</sub> CRESO2 in MCMCRESO2 in MCMA166ALDOHHCHDOX $\rightarrow$ 0.6 C <sub>2</sub> H <sub>2</sub> O <sub>2</sub> + 0.4 C <sub>5</sub> H <sub>4</sub> O <sub>3</sub> + 0.22.00·10 <sup>2</sup> HO <sub>2</sub> eliminationBräuer <sup>78</sup> C <sub>5</sub> H <sub>6</sub> O <sub>4</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.2 C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> + 0.2 C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 1.00·10 <sup>10</sup> est.est.A167(HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.est.A168(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM StandardBräuer <sup>78</sup> A169C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + OH $\rightarrow$ ACIDHCHD1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A164 | 2 ALDOHHCHD $\rightarrow$ HOC <sub>6</sub> H <sub>5</sub> CHO + (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CHO                                                                               | $1.00.10^{8}$        |                    | Mantaka et al. <sup>51</sup>                                       | Mvula et al. 49                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A165 | 2 ALDOHHCHDOX $\rightarrow$                                                                                                                                                                       | $1.00.10^{6}$        |                    | yields analogy recombination                                       | Tilgner and Herrmann <sup>77</sup> |
| A166       ALDOHHCHDOX $\rightarrow 0.6 C_2H_2O_2 + 0.4 C_5H_4O_3 + 0.2$ 2.00·10 <sup>2</sup> HO <sub>2</sub> elimination       Bräuer <sup>78</sup> C <sub>5</sub> H <sub>6</sub> O <sub>4</sub> + 0.4 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub> + 0.2 C <sub>4</sub> H <sub>4</sub> O <sub>2</sub> + 0.2 C <sub>4</sub> H <sub>6</sub> O <sub>3</sub> + 2 HO <sub>2</sub> 1.00·10 <sup>10</sup> est.       est.         A167       (HO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub> CH(OH) <sub>2</sub> + OH $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> 1.00·10 <sup>10</sup> est.       est.         A168       (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CH(OH) <sub>2</sub> + O <sub>2</sub> $\rightarrow$ (HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + HO <sub>2</sub> 2.00·10 <sup>9</sup> CAPRAM Standard       Bräuer <sup>78</sup> A169       C <sub>6</sub> H <sub>5</sub> CO <sub>2</sub> H + OH $\rightarrow$ ACIDHCHD       1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $1.36 C_5 H_4 O_4 + 1.36 C_2 H_2 O_2 + 0.64 1, 4 - C_7 H_4 O_3 + 2 HO_2$                                                                                                                          |                      |                    | CRESO2 in MCM                                                      |                                    |
| $\begin{array}{c} C_{5}H_{6}O_{4} + 0.4 \ C_{3}H_{4}O_{3} + 0.2 \ C_{4}H_{4}O_{2} + 0.2 \ C_{4}H_{6}O_{3} + 2 \ HO_{2} \\ \hline A167 & (HO)_{2}C_{6}H_{3}CH(OH)_{2} + OH \rightarrow (HO)_{2}C_{6}H_{4}CH(OH)_{2} & 1.00 \cdot 10^{10} & \text{est.} & \text{est.} \\ \hline A168 & (HO)_{2}C_{6}H_{4}CH(OH)_{2} + O_{2} \rightarrow (HO)_{2}C_{6}H_{4}CO_{2}H + HO_{2} & 2.00 \cdot 10^{9} & CAPRAM \ Standard & Bräuer^{78} \\ \hline A169 & C_{6}H_{5}CO_{2}H + OH \rightarrow ACIDHCHD & 1.80 \cdot 10^{9} & Remucal \ and \ Manley^{21} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A166 | ALDOHHCHDOX $\rightarrow 0.6 \text{ C}_2\text{H}_2\text{O}_2 + 0.4 \text{ C}_5\text{H}_4\text{O}_3 + 0.2$                                                                                         | $2.00 \cdot 10^2$    |                    | HO <sub>2</sub> elimination                                        | Bräuer <sup>78</sup>               |
| A167 $(HO)_2C_6H_3CH(OH)_2 + OH \rightarrow (HO)_2C_6H_4CH(OH)_2$ $1.00 \cdot 10^{10}$ est.est.A168 $(HO)_2C_6H_4CH(OH)_2 + O_2 \rightarrow (HO)_2C_6H_4CO_2H + HO_2$ $2.00 \cdot 10^9$ CAPRAM StandardBräuer <sup>78</sup> A169 $C_6H_5CO_2H + OH \rightarrow ACIDHCHD$ $1.80 \cdot 10^9$ Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $C_{5}H_{6}O_{4} + 0.4 C_{3}H_{4}O_{3} + 0.2 C_{4}H_{4}O_{2} + 0.2 C_{4}H_{6}O_{3} + 2 HO_{2}$                                                                                                    |                      |                    |                                                                    |                                    |
| A168 $(HO)_2C_6H_4CH(OH)_2 + O_2 \rightarrow (HO)_2C_6H_4CO_2H + HO_2$ 2.00·109CAPRAM StandardBräuer 78A169 $C_6H_5CO_2H + OH \rightarrow ACIDHCHD$ 1.80·109Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A167 | $(\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{CH}(\mathrm{OH})_{2} + \mathrm{OH} \rightarrow (\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}(\mathrm{OH})_{2}$                   | $1.00 \cdot 10^{10}$ |                    | est.                                                               | est.                               |
| A169 $C_6H_5CO_2H + OH \rightarrow ACIDHCHD$ 1.80·10 <sup>9</sup> Remucal and Manley <sup>21</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A168 | $(\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CH}(\mathrm{OH})_{2} + \mathrm{O}_{2} \rightarrow (\mathrm{HO})_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}\mathrm{H} + \mathrm{HO}_{2}$ | 2.00.109             |                    | CAPRAM Standard                                                    | Bräuer <sup>78</sup>               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A169 | $C_6H_5CO_2H + OH \rightarrow ACIDHCHD$                                                                                                                                                           | 1.80.109             |                    |                                                                    | Remucal and Manley <sup>21</sup>   |

|      | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | k <sub>298</sub>      | -E <sub>A</sub> /R | Comment                                                 | Reference                          |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|---------------------------------------------------------|------------------------------------|
| A170 | $C_6H_5CO_2H + NO_3 \rightarrow ACIDHCHD + H^+ + NO_3^ H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.50·10 <sup>7</sup>  | -1300              |                                                         | Umschlag et al. <sup>31</sup>      |
| A171 | $C_6H_5CO_2H + SO_4^- \rightarrow ACIDHCHD + H^+ + SO_4^{-2-} - H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.50·10 <sup>7</sup>  | -1300              |                                                         | est. after Herrmann et al. 55      |
| A172 | $C_6H_5CO_2H + Cl \rightarrow ACIDCLCHD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.80 \cdot 10^{10}$  |                    |                                                         | Martire et al. 44                  |
| A173 | $C_6H_5CO_2H + Cl_2^- \rightarrow ACIDCLCHD + Cl^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00·10 <sup>5</sup>  |                    |                                                         | Martire et al. 44                  |
| A174 | $C_6H_5CO_2^- + OH \rightarrow 0.93 \text{ ACIDHCHD}^- + 0.07 C_6H_5O_2 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.90·10 <sup>9</sup>  |                    | Deng et al. 95                                          | Buxton et al. <sup>70</sup>        |
|      | $0.07 \text{ CO}_2 + 0.07 \text{ OH}^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                    |                                                         |                                    |
| A175 | $C_6H_5CO_2^- + NO_3 \rightarrow C_6H_5O_2 + NO_3^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.20.109              |                    | ETR assumed                                             | est. after Herrmann et al. 55      |
| A176 | $C_6H_5CO_2^- + SO_4^- \rightarrow C_6H_5O_2 + SO_4^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20.109              |                    | ETR assumed                                             | Neta et al. <sup>96</sup>          |
| A177 | $C_6H_5CO_2^- + Cl_2^- \rightarrow C_6H_5O_2 + 2 Cl^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2.00 \cdot 10^{6}$   |                    | ETR assumed                                             | Hasegawa and Neta 97               |
| A178 | $\rm ACIDHCHD + O_2 \rightarrow \rm HOC_6H_4CO_2H + \rm HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2.00 \cdot 10^{6}$   |                    | Klein et al. <sup>98</sup> , Merga et al. <sup>75</sup> | PSSA Fang et al. <sup>76</sup>     |
| A179 | ACIDHCHD + Fe <sup>3+</sup> $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $7.00 \cdot 10^3$     |                    | Klein et al. 98                                         | Metelitsa <sup>50</sup>            |
|      | $0.93 \ HOC_{6}H_{4}CO_{2}H + 0.07 \ C_{6}H_{5}OH + 0.07 \ CO_{2} + 0.07 \ H_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                    |                                                         |                                    |
|      | $+ Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                    |                                                         |                                    |
| A180 | $2 \text{ ACIDHCHD} \rightarrow C_6 \text{H}_5 \text{CO}_2 \text{H} + \text{HOC}_6 \text{H}_4 \text{CO}_2 \text{H} + \text{H}_2 \text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.95.108              |                    | Klein et al. <sup>98</sup>                              | Metelitsa <sup>50</sup>            |
| A181 | $\text{ACIDHCHD}^{-} + \text{O}_2 \rightarrow \text{HOC}_6\text{H}_4\text{CO}_2^{-} + \text{HO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2.00 \cdot 10^{6}$   |                    | Klein et al. <sup>98</sup> , Merga et al. <sup>75</sup> | PSSA Fang et al. <sup>76</sup>     |
| A182 | ACIDHCHD <sup>-</sup> + Fe <sup>3+</sup> $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7.00 \cdot 10^3$     |                    | Klein et al. <sup>98</sup>                              | Metelitsa <sup>50</sup>            |
|      | $0.93 \text{ HOC}_{6}\text{H}_{4}\text{CO}_{2}^{-} + 0.07 \text{ C}_{6}\text{H}_{5}\text{O}^{-} + 0.07 \text{ CO}_{2} + 0.07 \text{ H}_{2}\text{O} + $ |                       |                    |                                                         |                                    |
|      | $Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                    |                                                         |                                    |
| A183 | $2 \text{ ACIDHCHD}^{-} \rightarrow \text{C}_6\text{H}_5\text{CO}_2^{-} + \text{HOC}_6\text{H}_4\text{CO}_2^{-} + \text{H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3.95 \cdot 10^8$     |                    | Klein et al. <sup>98</sup>                              | Metelitsa <sup>50</sup>            |
| A184 | $ACIDCLCHD + O_2 \rightarrow 2\text{-}ClC_6H_4CO_2H + HO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2.00 \cdot 10^{6}$   |                    |                                                         | PSSA Fang et al. <sup>76</sup>     |
| A185 | $ACIDCLCHD + Fe^{3+} \rightarrow 2\text{-}ClC_6H_4CO_2H + Fe^{2+} + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $7.00 \cdot 10^3$     |                    |                                                         | Metelitsa <sup>50</sup>            |
| A186 | $2 \text{ ACIDCLCHD} \rightarrow C_6 H_5 CO_2 H + 2 \text{-} ClC_6 H_4 CO_2 H + HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.00.10^{8}$         |                    | as HCHD, Mantaka et al. <sup>51</sup>                   | Mvula et al. <sup>49</sup>         |
| A187 | $2 C_6 H_5 O_2 \rightarrow 2 C_6 H_5 O + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.00.10^{6}$         |                    |                                                         | Tilgner and Herrmann <sup>77</sup> |
| A188 | $HOC_6H_4CO_2H + OH \rightarrow SAHCHD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.20·10 <sup>10</sup> |                    | est. Salicylic acid Huang et al. <sup>99</sup>          | Buxton et al. <sup>70</sup>        |
| A189 | $HOC_6H_4CO_2H + NO_3 \rightarrow SAHCHD + H^+ + NO_3^ H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.50·10 <sup>9</sup>  |                    |                                                         | Weller et al. <sup>86</sup>        |
| A190 | $HOC_6H_4CO_2H + SO_4^- \rightarrow SAHCHD + H^+ + SO_4^{2-} - H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.50.109              |                    |                                                         | est. after Herrmann et al. 55      |
| A191 | $\mathrm{HOC}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}\mathrm{H} + \mathrm{Cl}_{2}^{-} \rightarrow \mathrm{HOC}_{6}\mathrm{H}_{4}\mathrm{O}_{2} + 2\ \mathrm{Cl}^{-} + \mathrm{CO}_{2} + \mathrm{H}^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.10.108              |                    | est. Salicylic acid                                     | Hasegawa and Neta 97               |

|       | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k <sub>298</sub>        | -E <sub>A</sub> /R   | Comment                      | Reference                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------|--------------------------------------------------------|
| A192  | $HOC_6H_4CO_2H + Br_2 \rightarrow HOC_6H_3BrCO_2H + Br^- + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $4.42 \cdot 10^{9}$     | -4030                | est. Salicylic acid          | Patil et al. <sup>100</sup>                            |
| A193  | $HOC_6H_4CO_2H + O_3 \rightarrow (HO)_2C_6H_3CO_2H + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2.00 \cdot 10^2$       |                      | est.                         | Benitez et al. <sup>101</sup>                          |
| A194  | $HOC_6H_4CO_2^- + OH \rightarrow 0.93$ SAHCHD <sup>-</sup> + 0.07 COO <sup>-</sup> + 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.60·10 <sup>10</sup>   |                      | Santos et al. <sup>102</sup> | Buxton et al. <sup>70</sup>                            |
|       | $1,4-C_{6}H_{4}(OH)_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                              |                                                        |
| A195  | $HOC_6H_4CO_2^- + NO_3 \rightarrow HOC_6H_4O_2 + NO_3^- + CO_2 + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.60·10 <sup>9</sup>    |                      | est. Salicylic acid          | est. after Herrmann et al. 55                          |
| A196  | $HOC_6H_4CO_2^- + SO_4^- \rightarrow HOC_6H_4O_2 + SO_4^{2-} + CO_2 + H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.60·10 <sup>9</sup>    |                      | est. Salicylic acid          | Kishore and Mukherjee <sup>103</sup>                   |
| A197  | $HOC_6H_4CO_2^- + O_3 \rightarrow (HO)_2C_6H_3CO_2^- + O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.78 \cdot 10^{5}$     |                      | est.                         | Benitez et al. <sup>101</sup>                          |
| A198  | $FeHOC_6H_4CO_2^{2+} + h^{\mathcal{V}} \rightarrow Fe^{2+} + HOC_6H_4O_2 + CO_2 - O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.764·10 <sup>-02</sup> | $\cos(\chi)^{0.829}$ | $exp(-0.291/cos(\chi))$      | est. Fe(OH) <sup>2+</sup> Arakaki et al. <sup>58</sup> |
| A199  | SAHCHD + $O_2 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2.00.10^{6}$           |                      | products after Scheck and    | PSSA Fang et al. <sup>76</sup>                         |
|       | $0.75 \text{ HOC}_6\text{H}_4\text{O}_2 + 0.75 \text{ CO}_2 + 0.25 \text{ (HO)}_2\text{C}_6\text{H}_3\text{CO}_2\text{H} + \text{HO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                      | Frimmel <sup>52</sup>        |                                                        |
| A200  | SAHCHD + Fe <sup>3+</sup> $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7.00 \cdot 10^3$       |                      | products after Scheck and    | Metelitsa <sup>50</sup>                                |
|       | $0.75 \ HOC_6H_4O_2 + 0.75 \ CO_2 + 0.25 \ (HO)_2C_6H_3CO_2H + Fe^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                      | Frimmel <sup>52</sup>        |                                                        |
|       | + H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                      |                              |                                                        |
| A201  | $2 \text{ SAHCHD} \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1.00.10^{8}$           |                      | Mantaka et al. <sup>51</sup> | Mvula et al. 49                                        |
|       | $HOC_6H_4CO_2H + 0.75 HOC_6H_4O_2 + 0.75 CO_2 + 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |                      |                              |                                                        |
|       | $(\mathrm{HO})_2\mathrm{C}_6\mathrm{H}_3\mathrm{CO}_2\mathrm{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                      |                              |                                                        |
| A202  | SAHCHD <sup>-</sup> + $O_2 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2.00 \cdot 10^{6}$     |                      | products after Scheck and    | PSSA Fang et al. <sup>76</sup>                         |
|       | $0.75 \text{ HOC}_6\text{H}_4\text{O}_2 + 0.75 \text{ CO}_2 + 0.25 \text{ (HO)}_2\text{C}_6\text{H}_3\text{CO}_2^- + \text{HO}_2 - 0.75 \text{ HOC}_6\text{H}_3\text{CO}_2^- + 0.25 \text{ (HO)}_2\text{C}_6\text{H}_3\text{CO}_2^- + 0.25 \text{ (HO)}_2\text{C}_6\text{C}_6\text{H}_3\text{CO}_2^- + 0.25 \text{ (HO)}_2\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}_6\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                      | Frimmel <sup>52</sup>        |                                                        |
|       | 0.75 H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                      |                              |                                                        |
| A203  | SAHCHD <sup>-</sup> + Fe <sup>3+</sup> $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $7.00 \cdot 10^{3}$     |                      | products after Scheck and    | Metelitsa <sup>50</sup>                                |
|       | $0.75 \text{ HOC}_6\text{H}_4\text{O}_2 + 0.75 \text{ CO}_2 + 0.25 \text{ (HO)}_2\text{C}_6\text{H}_3\text{CO}_2^- + \text{Fe}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |                      | Frimmel <sup>32</sup>        |                                                        |
| A 204 | $+ H^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00.108                |                      | Mautalaa at al 51            | $M_{1} = 4 = 1 = 49$                                   |
| A204  | $2 \text{ SAHCHD}^{2} \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00.10                 |                      | Mantaka et al. <sup>31</sup> | Mivula et al. 49                                       |
|       | $HOC_6H_4CO_2^{-1} + 0.75 HOC_6H_4O_2^{-1} + 0.75 CO_2^{-1} + 0.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                      |                              |                                                        |
| A 205 | $(HO)_2C_6H_3CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 00,106                |                      |                              | Bröuer 78                                              |
| A205  | $2 \operatorname{HOU}_{6}\operatorname{H}_{4}\operatorname{U}_{2} \rightarrow 2 \operatorname{HOU}_{6}\operatorname{H}_{4}\operatorname{U} + 2 \operatorname{HOU}_{6}\operatorname{H}_{4}\operatorname{U} + \operatorname{U}_{2}$ $(\operatorname{HO}) \subset \operatorname{H}_{2} \subset \operatorname{U}_{2} \subset \operatorname{H}_{2} \operatorname{H}_{2} \subset \operatorname{H}_{2} \operatorname{H}$ | 8 00·10 <sup>9</sup>    |                      |                              | Duestaberg and Waite <sup>104</sup>                    |
| A200  | $(\Pi \cup)_2 \cup_6 \Pi_3 \cup \cup_2 \Pi^+ \cup \Pi \rightarrow I \text{ KIACIDII CID}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 00.104                |                      | ast                          | Pielski et al. 56                                      |
| A207  | $(\Pi O)_2 C_6 \Pi_3 C O_2 \Pi + \Pi O_2 \rightarrow I KIACIDHCHD + H_2 O_2 - H'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.90.10                 |                      | 551.                         | DICISKI CL al.                                         |

|      | Reaction                                                                                                                                                                                                                         | - k <sub>298</sub>    | -E <sub>A</sub> /R | Comment                                                          | Reference                                                        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| A208 | TRIACIDHCHD + $O_2 \rightarrow$<br>0.4 (HO) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> CO <sub>2</sub> H + 0.4 HO <sub>2</sub> + 0.6 TRIACIDHCHDOX                                                                               | 2.00·10 <sup>6</sup>  |                    | products est. Duesteberg and Waite <sup>104</sup>                | PSSA Fang et al. <sup>76</sup>                                   |
| A209 | $TRIACIDHCHD + Fe^{3+} \rightarrow (HO)_3C_6H_4CO_2H + Fe^{2+} + H^+$                                                                                                                                                            | 7.00·10 <sup>3</sup>  |                    | products est. Duesteberg and Waite <sup>104</sup>                | Metelitsa <sup>50</sup>                                          |
| A210 | 2 TRIACIDHCHD →<br>(HO) <sub>2</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H + (HO) <sub>3</sub> C <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> H                                                                         | 1.00.108              |                    | Mantaka et al. <sup>51</sup>                                     | Mvula et al. <sup>49</sup>                                       |
| A211 | $(HO)_{3}C_{6}H_{2}CO_{2}H + OH \rightarrow (HO)_{3}C_{6}H_{2}O_{2}$                                                                                                                                                             | 6.40·10 <sup>9</sup>  |                    | est. Santos et al. 102                                           | Dwibedy et al. <sup>25</sup>                                     |
| A212 | $(HO)_{3}C_{6}H_{2}CO_{2}H + NO_{3} \rightarrow (HO)_{3}C_{6}H_{2}O_{2} + NO_{3}^{-} + CO_{2} + H^{+}$                                                                                                                           | 6.30·10 <sup>8</sup>  |                    | ETR assumed                                                      | est. after Herrmann et al. 55                                    |
| A213 | $(\mathrm{HO})_{3}\mathrm{C}_{6}\mathrm{H}_{2}\mathrm{CO}_{2}\mathrm{H} + \mathrm{SO}_{4}^{-} \rightarrow (\mathrm{HO})_{3}\mathrm{C}_{6}\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{SO}_{4}^{2-} + \mathrm{CO}_{2} + \mathrm{H}^{+}$ | 6.30·10 <sup>8</sup>  |                    | ETR assumed                                                      | Caregnato et al. <sup>105</sup>                                  |
| A214 | $(\mathrm{HO})_{3}\mathrm{C}_{6}\mathrm{H}_{2}\mathrm{CO}_{2}\mathrm{H} + \mathrm{Cl}_{2}^{-} \rightarrow (\mathrm{HO})_{3}\mathrm{C}_{6}\mathrm{H}_{2}\mathrm{O}_{2} + 2 \mathrm{Cl}^{-} + \mathrm{CO}_{2} + \mathrm{H}^{+}$    | 1.90·10 <sup>9</sup>  |                    | ETR assumed                                                      | Dwibedy et al. <sup>25</sup>                                     |
| A215 | $(HO)_{3}C_{6}H_{2}CO_{2}H + O_{3} \rightarrow C_{7}H_{6}O_{7} + H_{2}O_{2} - H_{2}O$                                                                                                                                            | 9.70·10 <sup>4</sup>  |                    | products est. Beltrán et al. 106                                 | Beltrán et al. <sup>106</sup>                                    |
| A216 | $(HO)_{3}C_{6}H_{2}CO_{2}^{-} + OH \rightarrow (HO)_{3}C_{6}H_{2}O_{2} + CO_{2} + OH^{-}$                                                                                                                                        | 1.10·10 <sup>10</sup> |                    | ETR assumed                                                      | Dwibedy et al. <sup>25</sup>                                     |
| A217 | $(HO)_{3}C_{6}H_{2}CO_{2}^{-} + NO_{3} \rightarrow (HO)_{3}C_{6}H_{2}O_{2} + NO_{3}^{-} + CO_{2} + H^{+}$                                                                                                                        | 2.90·10 <sup>9</sup>  |                    | ETR assumed                                                      | est. after Herrmann et al. 55                                    |
| A218 | $(HO)_{3}C_{6}H_{2}CO_{2}^{-} + SO_{4}^{-} \rightarrow (HO)_{3}C_{6}H_{2}O_{2} + SO_{4}^{2-} + CO_{2} + H^{+}$                                                                                                                   | 2.90·10 <sup>9</sup>  |                    | ETR assumed                                                      | Caregnato et al. <sup>105</sup>                                  |
| A219 | $(HO)_{3}C_{6}H_{2}CO_{2}^{-} + Br_{2}^{-} \rightarrow (HO)_{3}C_{6}H_{2}O_{2} + 2 Br^{-} + CO_{2} + H^{+}$                                                                                                                      | 3.30·10 <sup>9</sup>  |                    | ETR assumed                                                      | Dwibedy et al. <sup>25</sup>                                     |
| A220 | $(HO)_{3}C_{6}H_{2}CO_{2}^{-} + O_{3} \rightarrow C_{7}H_{5}O_{7}^{-} + H_{2}O_{2} - H_{2}O_{3}$                                                                                                                                 | 4.70·10 <sup>5</sup>  |                    | products est. Beltrán et al. 106                                 | Beltran et al. <sup>107</sup>                                    |
| A221 | $2 (HO)_3C_6H_2O_2 \rightarrow (HO)_3C_6H_2O$                                                                                                                                                                                    | $1.00.10^{6}$         |                    |                                                                  | Bräuer <sup>78</sup>                                             |
| A222 | $2 (HO)_3 C_6 H_2 O \rightarrow (HO)_2 C_6 H_2 (O)_2 + C_6 H_2 (OH)_4$                                                                                                                                                           | 1.09·10 <sup>9</sup>  |                    |                                                                  | Adams and Michael 65                                             |
| A223 | $C_6H_2(OH)_4 + OH \rightarrow (HO)_2C_6H_2(O)_2 + HO_2 - 1.5 O_2$                                                                                                                                                               | $1.00 \cdot 10^{10}$  |                    | est. analogy 1,4-C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> | est. analogy 1,4-C <sub>6</sub> H <sub>4</sub> (OH) <sub>2</sub> |
| A224 | $(HO)_{2}C_{6}H_{2}(O)_{2} + OH \rightarrow HOOCCOCHCHCOCOOH + HO_{2} - 1.5 O_{2}$                                                                                                                                               | 2.00.108              |                    | est. Mousset et al. <sup>108</sup>                               | Mousset et al. <sup>108</sup>                                    |

 Table S4 Namelist of compounds.

| Name                            | Molecular formular                                                       |
|---------------------------------|--------------------------------------------------------------------------|
| Phenol                          | C <sub>6</sub> H <sub>5</sub> OH                                         |
| Catechol                        | $1,2-C_{6}H_{4}(OH)_{2}$                                                 |
| Hydroquinone                    | $1,4-C_{6}H_{4}(OH)_{2}$                                                 |
| 1,2-Benzoquinone                | $1,2-C_{6}H_{4}O_{2}$                                                    |
| 1,4-Benzoquinone                | $1,4-C_{6}H_{4}O_{2}$                                                    |
| Biphenol                        | $C_{12}H_{10}O_2$                                                        |
| Cresol                          | C <sub>7</sub> H <sub>7</sub> OH                                         |
| Methylcatechol                  | $C_7H_6(OH)_2$                                                           |
| Methylbenzoquinone              | $C_7H_6O_2$                                                              |
| Bicresol                        | $C_{14}H_{12}O_2$                                                        |
| Benzylalcohol                   | C <sub>6</sub> H <sub>5</sub> CH <sub>2</sub> OH                         |
| Hydroxy benzylalcohol           | HOC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> OH                       |
| Dihydroxy benzylalcohol         | $(HO)_2C_6H_3CH_2OH$                                                     |
| Benzaldehyde                    | C <sub>6</sub> H <sub>5</sub> CHO                                        |
| Hydrated benzaldehyde           | $C_6H_5CH(OH)_2$                                                         |
| Hydroxy benzaldehyde            | HOC <sub>6</sub> H <sub>4</sub> CHO                                      |
| Hydrated hydroxy benzaldehyde   | $HOC_6H_4CH(OH)_2$                                                       |
| Dihydroxy benzaldehyde          | $(HO)_2C_6H_5CHO$                                                        |
| Hydrated dihydroxy benzaldehyde | $(\mathrm{HO})_2\mathrm{C}_6\mathrm{H}_5\mathrm{CH}(\mathrm{OH})_2$      |
| Benzoic acid                    | $C_6H_5CO_2H$                                                            |
| Hydroxy benzoic acid            | $HOC_6H_4CO_2H$                                                          |
| Dihydroxy benzoic acid          | $(\mathrm{HO})_2\mathrm{C}_6\mathrm{H}_4\mathrm{CO}_2\mathrm{H}$         |
| Trihydroxy benzoic acid         | $(\mathrm{HO})_{3}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{CO}_{2}\mathrm{H}$ |
| 2-chloro benzoic acid           | $2-ClC_6H_4CO_2H$                                                        |
| Hydroxy bromo benzoic acid      | HOC <sub>6</sub> H <sub>3</sub> BrCO <sub>2</sub> H                      |
| 4-Nitrosophenol                 | $4-C_6H_5NO_2$                                                           |
| 2-Nitrophenol                   | $2-C_6H_5NO_3$                                                           |

| Name                                        | Molecular formular                               |
|---------------------------------------------|--------------------------------------------------|
| 4-Nitrophenol                               | $4-C_6H_5NO_3$                                   |
| 2-bromo-4-nitrophenol                       | C <sub>6</sub> H <sub>4</sub> NO <sub>3</sub> Br |
| Nitrocatechol                               | $NO_2C_6H_3(OH)_2$                               |
| 2-Nitrosocresol                             | $2-C_7H_7NO_2$                                   |
| 2-Methyl-6-Nitrophenol                      | $2-C_7H_7NO_3$                                   |
| 4-Nitrocatechol                             | $4-C_6H_5NO_4$                                   |
| Nitromethylcatechol                         | 2-C <sub>7</sub> H <sub>7</sub> NO <sub>4</sub>  |
| 2-Chlorophenol                              | $2-C_6H_4CIOH$                                   |
| 4-Chlorophenol                              | $4-C_6H_4ClOH$                                   |
| 2,4-Chlorophenol                            | $2-C_6H_3Cl_2OH$                                 |
| 2,6-Chlorophenol                            | $4-C_6H_3Cl_2OH$                                 |
| 2,4,6-Chlorophenol                          | $2-C_6H_2Cl_3OH$                                 |
| 2-Bromophenol                               | $2-C_6H_4BrOH$                                   |
| 4-Bromophenol                               | $4-C_6H_4BrOH$                                   |
| 2,4-Bromophenol                             | $2-C_6H_3Br_2OH$                                 |
| 2,6-Bromophenol                             | $4-C_6H_3Br_2OH$                                 |
| 2,4,6-Bromophenol                           | $2-C_6H_2Br_3OH$                                 |
| Dinitrophenol                               | $2,4-C_6H_4N_2O_5$                               |
| Dinitrocresol                               | $2,4-C_7H_6N_2O_5$                               |
| Muconic acid                                | $C_6H_6O_4$                                      |
| Methyl-muconic acid                         | $C_7H_8O_4$                                      |
| 2-(Hydroxymethyl)-1,4-benzoquinone          | $C_{7}H_{6}O_{7}$                                |
| 2-(Hydroxymethyl)-1,4-benzoquinone          | $C_7H_6O_3$                                      |
| 3,6-Dioxo-1,4-cyclohexadiene-1-carbaldehyde | $C_7H_4O_3$                                      |
| 4,5-Dihydroxy-2-pentenoic acid              | $C_5H_8O_4$                                      |
| 5-Hydroxy-4-oxo-2-pentenoic acid            | $C_5H_6O_4$                                      |
| 4-oxo4ent-2-enoic acid                      | $C_5H_6O_3$                                      |
| 4-Hydroxy-2-pentenoic acid                  | $C_5H_6O_3$                                      |
| 4-oxopent-2-enal                            | $C_5H_7O_2$                                      |

| Name                          | Molecular formular |
|-------------------------------|--------------------|
| 5-pentenal-4-oxo-2-enoic acid | $C_5H_4O_4$        |
| 4-oxopent-2-enedial           | $C_5H_4O_3$        |
| Fumaric acid/Maleic acid      | $C_4H_4O_4$        |
| 4-oxo-2-butenoic acid         | $C_4H_4O_3$        |
| Maldial                       | $C_4H_4O_2$        |
| 3-Hydroxy-2-oxopropanal       | $C_3H_4O_3$        |
| Methylglyoxal                 | $C_3H_4O_2$        |
| Glycolic acid                 | $C_2H_2O_3$        |
| Glyoxal                       | $C_2H_2O_2$        |

| Reaction                                                                                                                                                       | k <sub>298</sub>      | -E <sub>A</sub> /R | Comment | Reference                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|---------|--------------------------------|
| $C_5H_6O_3 + OH \rightarrow 0.5 CH_3C(O)CH(OH)CH(O_2)COOH + 0.5$<br>CH <sub>3</sub> C(O)CH(O <sub>2</sub> )CH(OH)COOH                                          | 1.16·10 <sup>10</sup> |                    |         | Minakata et al. 109            |
| $C_5H_5O_3^- + OH \rightarrow 0.5 CH_3C(O)CH(OH)CH(O_2)COO^- + 0.5 CH_3C(O)CH(O_2)CH(OH)COO^-$                                                                 | 4.94·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_6O_2$ + OH → 0.5 CH <sub>3</sub> C(O)CH(OH)CH(O <sub>2</sub> )CHO + 0.5<br>CH <sub>3</sub> CH(OH)CH(O <sub>2</sub> )C(O)CHO                              | 3.04·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_{5}H_{8}O_{3} + OH \rightarrow 0.5 CH_{3}CH(OH)CH(OH)CH(O_{2})COOH + 0.5 CH_{3}CH(OH)CH(O_{2})CH(OH)COOH$                                                   | 2.10·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_7O_3^-$ + OH → 0.5 CH <sub>3</sub> CH(OH)CH(OH)CH(O <sub>2</sub> )COO <sup>-</sup> + 0.5 CH <sub>3</sub> CH(OH)CH(O <sub>2</sub> )CH(OH)COO <sup>-</sup> | 8.40·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_6H_4O_6 + OH \rightarrow HOOCC(O)CH(OH)CH(O_2)C(O)COOH$                                                                                                     | 2.96·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_6H_3O_6^- + OH \rightarrow$                                                                                                                                 | 2.96·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $0.5 \text{ -OOCC(O)CH(OH)CH(O_2)C(O)COOH + 0.5}$                                                                                                              |                       |                    |         |                                |
| HOOCC(O)CH(OH)CH(O <sub>2</sub> )C(O)COO <sup>-</sup>                                                                                                          |                       |                    |         |                                |
| $C_6H_2O_6^{2-} + OH \rightarrow OOCC(O)CH(OH)CH(O_2)C(O)COO^{-}$                                                                                              | 2.96·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_{5}H_{4}O_{5} + OH \rightarrow 0.5 \text{ HOOCC(O)CH(OH)CH(O_{2})COOH} + 0.5 \text{ HOOCC(O)CH(O_{2})CH(OH)COOH}$                                           | 1.15·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_3O_5^-$ + OH → 0.5 <sup>-</sup> OOCC(O)CH(OH)CH(O <sub>2</sub> )COOH + 0.5 <sup>-</sup> OOCC(O)CH(O <sub>2</sub> )CH(OH)COOH                             | 4.93·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_2O_5^{2-}$ + OH → 0.5 <sup>-</sup> OOCC(O)CH(OH)CH(O_2)COO <sup>-</sup> +<br>0.5 <sup>-</sup> OOCC(O)CH(O_2)CH(OH)COO <sup>-</sup>                       | 4.93·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_6O_4 + OH \rightarrow 0.5 HOOCCH(OH)CH(O_2)CH(OH)CHO + 0.5 HOOCCH(O_2)CH(OH)CH(OH)CHO$                                                                   | 2.09·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_5H_5O_4^- + OH \rightarrow 0.5$ OOCCH(OH)CH(O <sub>2</sub> )CH(OH)CHO + 0.5 OOCCH(O <sub>2</sub> )CH(OH)CH(OH)CHO                                           | 8.83·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $C_{5}H_{8}O_{4} + OH \rightarrow 0.5$<br>HOCH <sub>2</sub> CH(OH)CH(OH)CH(O <sub>2</sub> )COOH + 0.5                                                          | 2.15·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |

**Table S5** Oxidation of the unsaturated organic compounds from oxidation of aromatic compounds by OH and O<sub>3</sub> for the separate core.

| Reaction                                                                                                | k <sub>298</sub>      | -E <sub>A</sub> /R | Comment | Reference                      |
|---------------------------------------------------------------------------------------------------------|-----------------------|--------------------|---------|--------------------------------|
| HOCH <sub>2</sub> CH(OH)CH(O <sub>2</sub> )CH(OH)COOH                                                   |                       |                    |         |                                |
| $C_5H_7O_4^- + OH \rightarrow HOCH_2CH(OH)CH(OH)CH(O_2)COO^- +$                                         | 8.44·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOCH <sub>2</sub> CH(OH)CH(O <sub>2</sub> )CH(OH)COO                                                |                       |                    |         |                                |
| $C_6H_6O_4 + OH \rightarrow 0.5 HOOCCH(OH)CH(O_2)CHCHCOOH$                                              | 3.85.1010             |                    |         | Minakata et al. <sup>109</sup> |
| + 0.5 HOOCCH(O <sub>2</sub> )CH(OH)CHCHCOOH                                                             |                       |                    |         |                                |
| $C_6H_5O_4$ + OH $\rightarrow 0.5$ HOOCCH(OH)CH(O <sub>2</sub> )CHCHCOO <sup>-</sup> +                  | $1.01 \cdot 10^{11}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOOCCH(O <sub>2</sub> )CH(OH)CHCHCOO-                                                               |                       |                    |         |                                |
| $C_6H_4O_4^{2-} + OH \rightarrow 0.5 \text{ OOCCH(OH)CH(O_2)CHCHCOO}^- +$                               | $1.64 \cdot 10^{11}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 -OOCCH(O <sub>2</sub> )CH(OH)CHCHCOO-                                                               |                       |                    |         |                                |
| $C_7H_8O_4 + OH \rightarrow$                                                                            | $4.02 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.2415 CH <sub>3</sub> C(COOH)=CHCH(OH)CH(O <sub>2</sub> )COOH +                                        |                       |                    |         |                                |
| $0.2415 \text{ CH}_3\text{C(COOH)}=\text{CHCH}(O_2)\text{C(O)COOH} +$                                   |                       |                    |         |                                |
| $0.25825 \text{ CH}_3\text{CH}(\text{OH})(\text{COOH})\text{CH}(\text{O}_2)\text{CH}=\text{CHCOOH} +$   |                       |                    |         |                                |
| 0.25825 CH <sub>3</sub> CH(O <sub>2</sub> )(COOH)CH(OH)CH=CHCOOH                                        |                       |                    |         |                                |
| $C_7H_7O_4$ + $OH \rightarrow$                                                                          | $1.08 \cdot 10^{11}$  |                    |         | Minakata et al. <sup>109</sup> |
| $0.08975 \text{ CH}_3\text{C}(\text{COOH}) = \text{CHCH}(\text{OH})\text{CH}(\text{O}_2)\text{COO}^- +$ |                       |                    |         |                                |
| $0.08975 \text{ CH}_3\text{C}(\text{COOH}) = \text{CHCH}(\text{O}_2)\text{C}(\text{O})\text{COO}^- +$   |                       |                    |         |                                |
| $0.40975 \text{ CH}_3\text{CH}(\text{OH})(\text{COOH})\text{CH}(\text{O}_2)\text{CH}=\text{CHCOO}^- +$  |                       |                    |         |                                |
| 0.40975 CH <sub>3</sub> CH(O <sub>2</sub> )(COOH)CH(OH)CH=CHCOO-                                        |                       |                    |         |                                |
| $C_7H_6O_4^{2-} + OH \rightarrow$                                                                       | $1.71 \cdot 10^{11}$  |                    |         | Minakata et al. <sup>109</sup> |
| $0.2415 \text{ CH}_3\text{C}(\text{COO}) = \text{CHCH}(\text{OH})\text{CH}(\text{O}_2)\text{COO} +$     |                       |                    |         |                                |
| $0.2415 \text{ CH}_3\text{C}(\text{COO})=\text{CHCH}(\text{O}_2)\text{C}(\text{O})\text{COO}+$          |                       |                    |         |                                |
| $0.25825 \text{ CH}_3\text{CH}(\text{OH})(\text{COO}^-)\text{CH}(\text{O}_2)\text{CH}=\text{CHCOO}^- +$ |                       |                    |         |                                |
| $0.25825 \text{ CH}_3\text{CH}(O_2)(\text{COO})\text{CH}(\text{OH})\text{CH}=\text{CHCOO}$              | 10                    |                    |         |                                |
| $C_5H_6O_3 + OH \rightarrow 0.5 CH_3CH(OH)(COOH)C(O_2)CHO + 0.5$                                        | $1.34 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| CH <sub>3</sub> CH(O <sub>2</sub> )(COOH)C(OH)CHO                                                       | 10                    |                    |         |                                |
| $C_5H_5O_3^- + OH \rightarrow 0.5 CH_3C(OH)(COO^-)CH(O_2)CHO + 0.5$                                     | $5.38 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| $CH_3C(O_2)(COO^-)CH(OH)CHO$                                                                            |                       |                    |         |                                |

| Reaction                                                                   | k <sub>298</sub>      | -E <sub>A</sub> /R | Comment | Reference                      |
|----------------------------------------------------------------------------|-----------------------|--------------------|---------|--------------------------------|
| $C_6H_8O_4 + OH \rightarrow$                                               | 2.26·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 CH <sub>3</sub> C(OH)(COOH)CH(O <sub>2</sub> )CH(OH)CHO +              |                       |                    |         |                                |
| 0.5 CH <sub>3</sub> C(O <sub>2</sub> )(COOH)CH(OH)CH(OH)CHO                |                       |                    |         |                                |
| $C_6H_7O_4^- + OH \rightarrow$                                             | 8.99·10 <sup>10</sup> |                    |         | Minakata et al. 109            |
| 0.5 CH <sub>3</sub> C(OH)(COO <sup>-</sup> )CH(O <sub>2</sub> )CH(OH)CHO + |                       |                    |         |                                |
| 0.5 CH <sub>3</sub> C(O <sub>2</sub> )(COO <sup>-</sup> )CH(OH)CH(OH)CHO   |                       |                    |         |                                |
| $C_6H_6O_6 + OH \rightarrow$                                               | 1.95·10 <sup>10</sup> |                    |         | Minakata et al. 109            |
| 0.5 HOOCC(O)CH(OH)CH(OH)CH(O <sub>2</sub> )COOH +                          |                       |                    |         |                                |
| 0.5 HOOCC(O)CH(OH)CH(O <sub>2</sub> )CH(OH)COOH                            |                       |                    |         |                                |
| $C_6H_5O_6^- + OH \rightarrow$                                             | 1.95·10 <sup>11</sup> |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOOCC(O)CH(OH)CH(OH)CH(O <sub>2</sub> )COO <sup>-</sup> +              |                       |                    |         |                                |
| 0.5 HOOCC(O)CH(OH)CH(O <sub>2</sub> )CH(OH)COO-                            |                       |                    |         |                                |
| $C_6H_4O_6^{2-} + OH \rightarrow$                                          | 8.25·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $0.5 \text{ OOCC}(O)CH(OH)CH(OH)CH(O_2)COO^- +$                            |                       |                    |         |                                |
| 0.5 OOCC(O)CH(OH)CH(O <sub>2</sub> )CH(OH)COO                              |                       |                    |         |                                |
| $C_5H_4O_4 + OH \rightarrow 0.5 HOOCCH(OH)CH(O_2)C(O)CHO +$                | $1.17 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOOCCH(O <sub>2</sub> )CH(OH)C(O)CHO                                   |                       |                    |         |                                |
| $C_5H_3O_4$ + OH $\rightarrow 0.5$ -OOCCH(OH)CH(O_2)C(O)CHO +              | $4.94 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 -OOCCH(O <sub>2</sub> )CH(OH)C(O)CHO                                   |                       |                    |         |                                |
| $C_5H_4O_3 + OH \rightarrow 0.5 OHCC(O)CH(OH)CH(O_2)CHO + 0.5$             | $3.04 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| OHCC(O)CH(O <sub>2</sub> )CH(OH)CHO                                        |                       |                    |         |                                |
| $C_5H_6O_3 + OH \rightarrow 0.5 HOCH_2C(O)CH(OH)CH(O_2)CHO +$              | $3.05 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOCH <sub>2</sub> C(O)CH(O <sub>2</sub> )CH(OH)CHO                     |                       |                    |         |                                |
| $C_5H_6O_4 + OH \rightarrow 0.5 HOCH_2C(O)CH(OH)CH(O_2)COOH +$             | $1.17 \cdot 10^{10}$  |                    |         | Minakata et al. <sup>109</sup> |
| 0.5 HOCH <sub>2</sub> C(O)CH(OH)CH(O <sub>2</sub> )COOH                    |                       |                    |         |                                |
| $C_5H_5O_4^- + OH \rightarrow 0.5 HOCH_2C(O)CH(OH)CH(O_2)COO^- +$          | 4.95·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |
| $0.5 \operatorname{HOCH}_2C(O)CH(OH)CH(O_2)COO^-$                          |                       |                    |         |                                |
| $C_5H_8O_4 + OH \rightarrow$                                               | 1.96·10 <sup>10</sup> |                    |         | Minakata et al. <sup>109</sup> |

| Reaction                                                                                                   | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment | Reference                      |  |
|------------------------------------------------------------------------------------------------------------|----------------------|--------------------|---------|--------------------------------|--|
| 0.5 CH <sub>3</sub> C(O)CH(OH)CH(OH)CH(O <sub>2</sub> )COOH +                                              |                      |                    |         |                                |  |
| 0.5 CH <sub>3</sub> C(O)CH(OH)CH(O <sub>2</sub> )CH(OH)COOH                                                |                      |                    |         |                                |  |
| $C_5H_7O_4^- + OH \rightarrow$                                                                             | 8.25.1010            |                    |         | Minakata et al. <sup>109</sup> |  |
| 0.5 CH <sub>3</sub> C(O)CH(OH)CH(OH)CH(O <sub>2</sub> )COO <sup>-</sup> +                                  |                      |                    |         |                                |  |
| 0.5 CH <sub>3</sub> C(O)CH(OH)CH(O <sub>2</sub> )CH(OH)COO <sup>-</sup>                                    |                      |                    |         |                                |  |
| $C_5H_6O_6 + OH \rightarrow$                                                                               | 2.06·10 <sup>9</sup> |                    |         | Minakata et al. <sup>109</sup> |  |
| 0.134 HOOCC(O)C(OH)(O <sub>2</sub> )CH(OH)CHO +                                                            |                      |                    |         |                                |  |
| 0.426 HOOCC(O)CH(OH)C(OH)(O <sub>2</sub> )CHO +                                                            |                      |                    |         |                                |  |
| 0.44 HOOCC(O)CH(OH)CH(OH)C(O)O <sub>2</sub>                                                                |                      |                    |         |                                |  |
| $C_5H_5O_6^- + OH \rightarrow$                                                                             | $2.06 \cdot 10^9$    |                    |         | Minakata et al. <sup>109</sup> |  |
| 0.134 -OOCC(O)C(OH)(O <sub>2</sub> )CH(OH)CHO +                                                            |                      |                    |         |                                |  |
| $0.426 - OOCC(O)CH(OH)C(OH)(O_2)CHO +$                                                                     |                      |                    |         |                                |  |
| $0.44 - OOCC(O)CH(OH)CH(OH)C(O)O_2$                                                                        |                      |                    |         |                                |  |
| $C_5H_8O_4 + OH \rightarrow 0.138 CH_3C(O)C(OH)(O_2)CH(OH)CHO$                                             | $2.12 \cdot 10^{9}$  |                    |         | Minakata et al. <sup>109</sup> |  |
| $+ 0.424 \text{ CH}_3\text{C}(\text{O})\text{C}(\text{OH})(\text{OH})\text{CH}(\text{O}_2)\text{CHO} +$    |                      |                    |         |                                |  |
| $0.438 \text{ CH}_3\text{C}(\text{O})\text{CH}(\text{OH})\text{CH}(\text{OH})\text{C}(\text{O})\text{O}_2$ |                      |                    |         |                                |  |
| $C_7H_6O_7 + OH \rightarrow$                                                                               | $3.85 \cdot 10^{10}$ |                    |         | est. muconic acid              |  |
| $0.5 \operatorname{HOOCC(OH)(OH)CH(O_2)(COOH)CH=CHCOOH +}$                                                 |                      |                    |         |                                |  |
| 0.5 HOOCC(OH)(O <sub>2</sub> )CH(OH)(COOH)CH=CHCOOH                                                        |                      |                    |         |                                |  |
| $C_7H_5O_7^- + OH \rightarrow$                                                                             | $1.01 \cdot 10^{11}$ |                    |         | est. muconic acid              |  |
| $0.5 \text{-OOCC(OH)(OH)CH(O_2)(COOH)CH=CHCOOH +}$                                                         |                      |                    |         |                                |  |
| $0.5 \text{-OOCC(OH)(O_2)CH(OH)(COOH)CH=CHCOOH}$                                                           |                      |                    |         |                                |  |
| $C_7H_4O_7^{2-} + OH \rightarrow$                                                                          | $1.64 \cdot 10^{11}$ |                    |         | est. muconic acid              |  |
| $0.5 \text{ -OOCC(OH)(OH)CH(O_2)(COOH)CH=CHCOO^- +}$                                                       |                      |                    |         |                                |  |
| $0.5 \text{ -OOCC(OH)(O_2)CH(OH)(COOH)CH=CHCOO}$                                                           |                      |                    |         |                                |  |
| $C_7H_4O_7^{3-} + OH \rightarrow$                                                                          | 1.64.1011            |                    |         | est. muconic acid              |  |
| $0.5 \text{ -OOCC(OH)(OH)CH(O_2)(COO^-)CH=CHCOO^- +}$                                                      |                      |                    |         |                                |  |
| 0.5 -OOCC(OH)(O <sub>2</sub> )CH(OH)(COO <sup>-</sup> )CH=CHCOO <sup>-</sup>                               |                      |                    |         |                                |  |

| Reaction                                                                                                                    | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment                            | Reference                          |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------------------------------|------------------------------------|
| $C_6H_4O_4^{2-} + Cl_2^{-} \rightarrow C_4H_4O_3 + 2 Cl^{-} + HO_2 + CO + CO_2 - 2 O_2$                                     | 2.10.108             |                    | products est.                      | Hasegawa and Neta 97               |
| $C_6H_6O_4 + O_3 \rightarrow C_4H_4O_3 + C_2H_2O_3 + H_2O_2 - H_2O_3$                                                       | 1.60.104             |                    | yields Leitzke and Sonntag         | Beltrán et al. <sup>106</sup>      |
| $C_6H_5O_4^- + O_3 \rightarrow C_4H_4O_3 + C_2HO_3^- + H_2O_2 - H_2O_3^-$                                                   | $2.65 \cdot 10^4$    |                    |                                    | Leitzke and Sonntag <sup>110</sup> |
| $C_6H_4O_4^{2-} + O_3 \rightarrow C_4H_3O_3^{-} + C_2HO_3^{-} + H_2O_2 - H_2O_3^{-}$                                        | 1.40·10 <sup>5</sup> |                    | yields Leitzke and Sonntag         | Beltrán et al. <sup>106</sup>      |
| $C_7H_8O_4 + O_3 \rightarrow 0.5 C_4H_6O_5 + 0.5 C_3H_4O_3 + 0.5 C_4H_4O_3 + 0.5 C_3H_5O_5 - H_2O$                          | 1.60.104             |                    | Leitzke and Sonntag <sup>110</sup> | est. muconic acid                  |
| $C_7H_7O_4^- + O_3 \rightarrow 0.5 C_4H_6O_5 + 0.5 C_3H_4O_3 + 0.5 C_4H_4O_3 + 0.5 C_3H_5O_5 - H_2O$                        | 2.65·10 <sup>4</sup> |                    | Leitzke and Sonntag <sup>110</sup> | est. muconic acid                  |
| $C_7H_6O_4^{2-} + O_3 \rightarrow 0.5 C_4H_6O_5 + 0.5 C_3H_4O_3 + 0.5 C_4H_4O_3 + 0.5 C_3H_5O_5 - H_2O$                     | 1.40·10 <sup>5</sup> |                    | Leitzke and Sonntag <sup>110</sup> | est. muconic acid                  |
| $\begin{array}{c} C_5H_6O_3+O_3 \rightarrow 0.5 \ C_2H_2O_2+0.5 \ C_3H_4O_4+0.5 \ C_3H_4O_3+\\ 0.5 \ C_2H_2O_3 \end{array}$ | 1.00.104             |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_5H_8O_4 + O_3 \rightarrow 0.5 \ C_2H_2O_3 + 0.5 \ C_3H_6O_4 + 0.5 \ C_3H_6O_3 + 0.5 \ C_2H_2O_4$                         | 1.00.104             |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_5H_6O_4 + O_3 \rightarrow 0.5 C_2H_2O_3 + 0.5 C_3H_4O_4 + 0.5 C_3H_4O_3 + 0.5 C_2H_2O_4$                                 | 1.00·10 <sup>3</sup> |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_5H_4O_3 + O_3 \rightarrow 0.5 C_2H_2O_2 + 0.5 C_3H_2O_4 + 0.5 C_3H_2O_3 + 0.5 C_2H_2O_3$                                 | 1.00.104             |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_5H_6O_4 + O_3 \rightarrow 0.5 C_2H_2O_3 + 0.5 C_3H_4O_4 + 0.5 C_3H_4O_3 + 0.5 C_2H_2O_4$                                 | 1.00.104             |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_5H_4O_4 + O_3 \rightarrow 0.5 C_2H_2O_3 + 0.5 C_3H_2O_4 + 0.5 C_3H_2O_3 + 0.5 C_2H_2O_4$                                 | 1.00·10 <sup>3</sup> |                    | est. lower limit                   | Herrmann et al. <sup>111</sup>     |
| $C_7H_6O_7 + O_3 \rightarrow C_2H_2O_4 + C_5H_4O_5 + H_2O_2$                                                                | 1.60.104             |                    |                                    | est. muconic acid                  |
| $C_7H_5O_7^- + O_3 \rightarrow C_2HO_4^- + C_5H_4O_5 + H_2O_2$                                                              | $2.65 \cdot 10^4$    |                    |                                    | est. muconic acid                  |
| $C_7H_4O_7^{2-} + O_3 \rightarrow C_2HO_4^{-} + C_5H_3O_5^{-} + H_2O_2$                                                     | 1.40.105             |                    |                                    | est. muconic acid                  |

| Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | k <sub>298</sub>              | -E <sub>A</sub> /R | Comment | Reference         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|---------|-------------------|
| $C_7H_3O_7^{3-} + O_3 \rightarrow C_2HO_4^{-} + C_5H_2O_5^{2-} + H_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.40·10 <sup>5</sup>          |                    |         | est. muconic acid |
| $\rm C_5H_6O_3 + O_3 \rightarrow 0.5 \ C_3H_6O_4 + 0.5 \ C_2H_2O_3 + 0.5 \ C_2H_4O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.40·10 <sup>3</sup>          |                    |         | est. maleic acid  |
| $0.5 C_3 H_4 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                    |         |                   |
| $C_5H_5O_3^- + O_3 \rightarrow 0.5 C_3H_6O_4 + 0.5 C_2H_1O_3^- + 0.5 C_2H_3O_5^- +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.20 \cdot 10^3$             |                    |         | est. maleic acid  |
| $0.5 C_3 H_4 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                    |         |                   |
| $C_5H_8O_3 + O_3 \rightarrow 0.5 C_3H_8O_4 + 0.5 C_2H_2O_3 + 0.5 C_2H_6O_5 + 0.5 C_2H_6$ | $1.40 \cdot 10^{3}$           |                    |         | est. maleic acid  |
| $0.5 \text{ C}_3\text{H}_4\text{O}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 20 103                      |                    |         |                   |
| $C_5H_7O_3^- + O_3 \rightarrow 0.5 C_3H_8O_4 + 0.5 C_2HO_3^- + 0.5 C_2H_6O_5^- + 0.5 C_2H_6O_$ | 4.20 <b>·</b> 10 <sup>3</sup> |                    |         | est. maleic acid  |
| $0.5 C_{3}H_{4}O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 40.103                      |                    |         | est maleic acid   |
| $C_5 \Pi_6 O_2 + O_3 \rightarrow 0.5 C_3 \Pi_6 O_4 + 0.5 C_2 \Pi_2 O_2 + 0.5 C_2 \Pi_4 O_4 + 0.5 C_2 \Pi_4 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.40 10                       |                    |         | est. marcie acid  |
| $C_5H_4O_2 + O_2 \rightarrow 0.5C_2H_4O_5 + 0.5C_2H_2O_2 + 0.5C_2H_4O_4 + 0$ | $1.40 \cdot 10^{3}$           |                    |         | est, maleic acid  |
| $0.5 C_3H_4O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                    |         |                   |
| $C_5H_8O_4 + O_3 \rightarrow 0.5 C_3H_8O_5 + 0.5 C_2H_2O_3 + 0.5 C_2H_4O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.40·10 <sup>3</sup>          |                    |         | est. maleic acid  |
| 0.5 C <sub>3</sub> H <sub>6</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                    |         |                   |
| $C_5H_7O_4^- + O_3 \rightarrow 0.5 \ C_3H_8O_5 + 0.5 \ C_2HO_3^- + 0.5 \ C_2H_3O_5^- +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.20·10 <sup>3</sup>          |                    |         | est. maleic acid  |
| $0.5 C_3 H_6 O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                    |         |                   |
| $C_5H_6O_4 + O_3 \rightarrow 0.5 \ C_3H_6O_5 + 0.5 \ C_2H_2O_3 + 0.5 \ C_2H_4O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1.40 \cdot 10^{3}$           |                    |         | est. maleic acid  |
| $0.5 C_3 H_4 O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |                    |         |                   |
| $C_5H_5O_4^- + O_3 \rightarrow 0.5 C_3H_6O_5 + 0.5 C_2HO_3^- + 0.5 C_2H_3O_5^- +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $4.20 \cdot 10^{3}$           |                    |         | est. maleic acid  |
| 0.5 C <sub>3</sub> H <sub>4</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 40 102                      |                    |         |                   |
| $C_5H_4O_3 + O_3 \rightarrow 0.5 C_3H_4O_5 + 0.5 C_2H_2O_2 + 0.5 C_2H_4O_4 + 0.5 C_2H_4O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.40·10 <sup>3</sup>          |                    |         | est. maleic acid  |
| $0.5 C_3H_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 40.103                      |                    |         | ast malaia agid   |
| $C_5H_6O_4 + O_3 \rightarrow 0.5 C_3H_6O_5 + 0.5 C_2H_2O_3 + 0.5 C_2H_4O_5 + 0.5 C_2H_4$ | 1.40.10                       |                    |         | est. mateic acid  |
| $C_2H_2O_3^2 + O_3 \rightarrow 0.5 C_2H_2O_2 + 0.5 C_2HO_3^2 + 0.5 C_2H_2O_2^2 + 0.5 C_2H_2O_$ | $4\ 20\cdot10^{3}$            |                    |         | est maleic acid   |
| $0.5 C_2H_4O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20 10                       |                    |         |                   |
| $C_{5}H_{4}O_{4} + O_{3} \rightarrow 0.5 C_{3}H_{4}O_{5} + 0.5 C_{2}H_{2}O_{2} + 0.5 C_{2}H_{4}O_{5} + 0.5 C_{3}H_{4}O_{5} + 0.5 C_{3}H_{5}O_{5} + 0.5 C_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40·10 <sup>3</sup>          |                    |         | est. maleic acid  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                    |         |                   |

| Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment | Reference          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|---------|--------------------|
| 0.5 C <sub>3</sub> H <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                    |         |                    |
| $C_5H_3O_4^- + O_3 \rightarrow 0.5 C_3H_4O_5 + 0.5 C_2HO_3^- + 0.5 C_2H_3O_5^- +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.20·10 <sup>3</sup> |                    |         | est. maleic acid   |
| 0.5 C <sub>3</sub> H <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                    |         |                    |
| $C_5H_4O_5 + O_3 \rightarrow 0.5 \ C_3H_4O_6 + 0.5 \ C_2H_2O_3 + 0.5 \ C_2H_4O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.40·10 <sup>3</sup> |                    |         | est. maleic acid   |
| $0.5 C_3 H_2 O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |         |                    |
| $C_5H_3O_5^- + O_3 \rightarrow 0.5 \ C_3H_3O_6^- + 0.5 \ C_2H_2O_3 + 0.5 \ C_2H_4O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4.20 \cdot 10^3$    |                    |         | est. maleic acid   |
| $0.5 C_{3}HO_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |         |                    |
| $C_5H_2O_5^{2-} + O_3 \rightarrow 0.5 C_3H_3O_6^{-} + 0.5 C_2HO_3^{-} + 0.5 C_2H_3O_5^{-} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $7.00 \cdot 10^3$    |                    |         | est. maleic acid   |
| $0.5 C_{3}HO_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |         |                    |
| $C_6H_4O_6 + O_3 \rightarrow C_3H_2O_4 + C_3H_4O_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.40 \cdot 10^3$    |                    |         | est. maleic acid   |
| $C_6H_3O_6^- + O_3 \rightarrow C_3HO_4^- + C_3H_4O_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.20 \cdot 10^3$    |                    |         | est. maleic acid   |
| $C_5H_2O_6^{2-} + O_3 \rightarrow C_3HO_4^{-} + C_3H_3O_6^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $7.00 \cdot 10^3$    |                    |         | est. maleic acid   |
| $C_5H_6O_3 + O_3 \rightarrow 0.5 C_3H_6O_5 + 0.5 C_2H_2O_2 + 0.5 C_2H_4O_4 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.40 \cdot 10^3$    |                    |         | est. maleic acid   |
| $0.5 C_3 H_4 O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                    |         |                    |
| $C_5H_5O_3^- + O_3 \rightarrow 0.5 C_3H_5O_5^- + 0.5 C_2H_2O_2 + 0.5 C_2H_4O_4 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $4.20 \cdot 10^3$    |                    |         | est. maleic acid   |
| $0.5 C_3 H_3 O_3^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                    |         |                    |
| $C_6H_8O_4 + O_3 \rightarrow 0.5 C_3H_4O_3 + 0.5 C_3H_6O_5 + 0.5 C_3H_6O_5 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1.40 \cdot 10^3$    |                    |         | est. maleic acid   |
| $0.5 C_3 H_4 O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.00.102             |                    |         |                    |
| $C_6H_7O_4^- + O_3 \rightarrow 0.5 C_3H_4O_3 + 0.5 C_3H_5O_5^- + 0.5 C_3H_6O_5 + 0.5 C_$   | 4.20.103             |                    |         | est. maleic acid   |
| $0.5 \text{ C}_{3}\text{H}_{3}\text{O}_{3}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (0, 104            |                    |         |                    |
| $C_6H_6O_6 + O_3 \rightarrow 0.5 \ C_2H_2O_3 + 0.5 \ C_4H_6O_7 + 0.5 \ C_3H_4O_5 + 0.5 \ C_4H_6O_7 + 0.5 \ C_3H_6O_7 + 0.5 \ C_3H$   | 1.60•10*             |                    |         | est. muconic acid  |
| $0.5 C_4 H_4 O_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 65.104             |                    |         | ast musania said   |
| $C_6H_5O_6^{-1} + O_3 \rightarrow 0.5 C_2H_2O_3 + 0.5 C_4H_5O_7^{-1} + 0.5 C_3H_4O_5 + 0.5 C_4H_5O_7^{-1} + 0.5 C_3H_4O_5 + 0.5 C_4H_5O_7^{-1} + 0.5 C_5H_5O_7^{-1} +$   | 2.03.10              |                    |         | est. Indeonie acid |
| $0.5 C_{4}\Pi_{3}O_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 40.105             |                    |         | est muconic said   |
| $C_6H_4O_6^2 + O_3 \rightarrow 0.5 C_2HO_3 + 0.5 C_4H_5O_7 + 0.5 C_3H_3O_5 + 0.5 C_4H_5O_7 + 0.5 C_5H_6O_7 + 0.5 C_5H_6$   | 1.40 10              |                    |         | est. indeonie acid |
| $0.5 C_{4}H_{3}O_{5}$<br>$C_{1}H_{1}O_{1} + O_{2} \rightarrow 0.5 C_{2}H_{2}O_{2} + 0.5 C_{3}H_{2}O_{2} + 0.5 C_{4}H_{2}O_{2} + 0.5 C_{5}H_{2}O_{2} + 0.5 C_{5}H_{2}O$ | $1 \ 40 \cdot 10^3$  |                    |         | est maleic acid    |
| $0.5 C_4 H_2 O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.10 10              |                    |         |                    |
| 0.5 0411005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |         |                    |

| Reaction                                                                                        | k <sub>298</sub>     | -E <sub>A</sub> /R | Comment | Reference        |
|-------------------------------------------------------------------------------------------------|----------------------|--------------------|---------|------------------|
| $C_6H_7O_4^- + O_3 \rightarrow 0.5 C_2HO_3^- + 0.5 C_4H_8O_5 + 0.5 C_2H_3O_5^- + 0.5 C_4H_6O_3$ | 4.20·10 <sup>3</sup> |                    |         | est. maleic acid |

| Compound           | moderate emission rate<br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | strong emission rate <sup>112</sup><br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | Comment                         |
|--------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|
| Inorganics         |                                                                         |                                                                                      |                                 |
| СО                 | $2.04 \cdot 10^{12}$                                                    | 8.99·10 <sup>12</sup>                                                                |                                 |
| NH <sub>3</sub>    | $9.03 \cdot 10^{10}$                                                    | 3.03.1011                                                                            |                                 |
| NO                 | 8.56·10 <sup>11</sup>                                                   | $1.01 \cdot 10^{12}$                                                                 |                                 |
| NO <sub>2</sub>    | $7.10 \cdot 10^{10}$                                                    | -                                                                                    |                                 |
| SO <sub>2</sub>    | 8.94·10 <sup>11</sup>                                                   | $3.27 \cdot 10^{12}$                                                                 |                                 |
| HCl                | $5.25 \cdot 10^{10}$                                                    | -                                                                                    | cal. from UK Emission Inventory |
| Organics           |                                                                         |                                                                                      |                                 |
| Alkanes            |                                                                         |                                                                                      |                                 |
| Methane            | $1.47 \cdot 10^{12}$                                                    | -                                                                                    |                                 |
| Ethane             | $6.48 \cdot 10^{11}$                                                    | 1.54.1011                                                                            |                                 |
| Propane            | 1.61.109                                                                | $1.23 \cdot 10^{10}$                                                                 |                                 |
| n-Butane           | $1.87 \cdot 10^{10}$                                                    | 1.89·10 <sup>11</sup>                                                                |                                 |
| i-Butena           | 5.08·10 <sup>8</sup>                                                    | 5.13·10 <sup>9</sup>                                                                 |                                 |
| n-Pentane          | 2.33·10 <sup>9</sup>                                                    | $6.65 \cdot 10^{10}$                                                                 |                                 |
| i-Pentane          | 4.13.109                                                                | 1.18.1011                                                                            |                                 |
| n-Hexane           | $1.97 \cdot 10^9$                                                       | $6.73 \cdot 10^{10}$                                                                 |                                 |
| 3-Methylpentane    | 5.77·10 <sup>8</sup>                                                    | $1.97 \cdot 10^{10}$                                                                 |                                 |
| 2,2-Dimethylbutane | $3.54 \cdot 10^{8}$                                                     | $1.21 \cdot 10^{10}$                                                                 |                                 |
| 2-Methylpentane    | 8.99·10 <sup>9</sup>                                                    | 3.16.1010                                                                            |                                 |
| n-Heptane          | $2.88 \cdot 10^{10}$                                                    | $1.29 \cdot 10^{11}$                                                                 |                                 |
| i-Heptane          | 5.36.109                                                                | $2.40 \cdot 10^{10}$                                                                 |                                 |

**Table S6** Emission values of the two urban environments used in the simulations. Strong emission scenario based on the values in Ervens et al. <sup>112</sup> is done using the ratios given in Middleton et al. <sup>113</sup>.

| Compound          | moderate emission rate<br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | strong emission rate <sup>112</sup><br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | Comment |
|-------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
| Octane            | 5 42·10 <sup>9</sup>                                                    | 2 76.1010                                                                            |         |
| Nonane            | $2.02 \cdot 10^9$                                                       | $1.16 \cdot 10^{10}$                                                                 |         |
| Decane            | 1.33.109                                                                | 8.46.109                                                                             |         |
| Undecane          | $3.32 \cdot 10^9$                                                       | $2.31 \cdot 10^{10}$                                                                 |         |
| Cyclohexane       | 5.33·10 <sup>9</sup>                                                    | $2.00 \cdot 10^{10}$                                                                 |         |
| Alkenes           |                                                                         |                                                                                      |         |
| Ethene            | $1.65 \cdot 10^{10}$                                                    | 2.61.1011                                                                            |         |
| Propene           | 9.19·10 <sup>9</sup>                                                    | $3.09 \cdot 10^{10}$                                                                 |         |
| n-Butene          | $1.47 \cdot 10^9$                                                       | 6.60·10 <sup>9</sup>                                                                 |         |
| i-Butene          | 3.29.107                                                                | $1.48 \cdot 10^{8}$                                                                  |         |
| n-Pentene         | 7.90·10 <sup>8</sup>                                                    | 4.43·10 <sup>9</sup>                                                                 |         |
| 3-Methylbutene    | $1.41 \cdot 10^{8}$                                                     | $7.88 \cdot 10^8$                                                                    |         |
| 2-Methylbutene    | $8.78 \cdot 10^{6}$                                                     | $4.92 \cdot 10^{7}$                                                                  |         |
| n-Hexene          | 9.44·10 <sup>8</sup>                                                    | 4.20.109                                                                             |         |
| Trimethylethylene | $7.47 \cdot 10^8$                                                       | -                                                                                    |         |
| trans-2-Butene    | 5.85·10 <sup>8</sup>                                                    | -                                                                                    |         |
| cis-2-Butene      | $4.29 \cdot 10^8$                                                       | -                                                                                    |         |
| trans-Pentene     | 5.58·10 <sup>8</sup>                                                    | -                                                                                    |         |
| cis-Pentene       | $3.42 \cdot 10^8$                                                       | -                                                                                    |         |
| cis-Hexene        | $1.42 \cdot 10^{8}$                                                     | -                                                                                    |         |
| Dialkenes         |                                                                         |                                                                                      |         |
| Butadiene         | 1.11.109                                                                | $1.24 \cdot 10^{11}$                                                                 |         |
| Isoprene          | 3.52.107                                                                | $1.54 \cdot 10^{10}$                                                                 |         |
| Alkynes           |                                                                         |                                                                                      |         |
| Ethyne            | 8.92·10 <sup>9</sup>                                                    | $4.04 \cdot 10^{10}$                                                                 |         |
| Aromatics         |                                                                         |                                                                                      |         |

| Compound               | moderate emission rate<br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | strong emission rate <sup>112</sup><br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | Comment |
|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
| Benzene                | 9 <i>4</i> 1.10 <sup>8</sup>                                            | 1 89.1010                                                                            |         |
| Styrene                | 5 21.108                                                                | 9 02.109                                                                             |         |
| Toluene                | $6.01 \cdot 10^9$                                                       | $1 42.10^{11}$                                                                       |         |
| Ethyl benzene          | 5 69·10 <sup>7</sup>                                                    | $1.55 \cdot 10^9$                                                                    |         |
| n-Propyl benzene       | $1 46 \cdot 10^7$                                                       | $450 \cdot 10^8$                                                                     |         |
| i-Propyl benzene       | 4 01.106                                                                | $1.24 \cdot 10^{8}$                                                                  |         |
| o-Xylene               | 4.64.108                                                                | $2.04 \cdot 10^{10}$                                                                 |         |
| p-Xylene               | 6.24.108                                                                | $2.74 \cdot 10^{10}$                                                                 |         |
| 1,2,4-Trimethylbenzene | $3.51 \cdot 10^{8}$                                                     | $1.75 \cdot 10^{10}$                                                                 |         |
| 1,3,5-Trimethylbenzene | $3.24 \cdot 10^{8}$                                                     | $1.61 \cdot 10^{10}$                                                                 |         |
| m-Xylene               | $1.70 \cdot 10^{8}$                                                     | $7.46 \cdot 10^9$                                                                    |         |
| 1,2,3-Trimethylbenzene | 9.96·10 <sup>7</sup>                                                    | $4.95 \cdot 10^9$                                                                    |         |
| o-Ethyl toluene        | 6.22·10 <sup>7</sup>                                                    | $3.09 \cdot 10^9$                                                                    |         |
| m-Ethyl toluene        | 3.99.107                                                                | $1.98 \cdot 10^9$                                                                    |         |
| Aldehydes              |                                                                         |                                                                                      |         |
| Methanal               | $1.74 \cdot 10^{10}$                                                    | $2.58 \cdot 10^{10}$                                                                 |         |
| Ethanal                | 3.56.109                                                                | $3.53 \cdot 10^{10}$                                                                 |         |
| Propanal               | $1.34 \cdot 10^{8}$                                                     | $1.74 \cdot 10^9$                                                                    |         |
| Butanal                | $1.08 \cdot 10^{8}$                                                     | $1.74 \cdot 10^9$                                                                    |         |
| Acrolein               | $6.22 \cdot 10^{8}$                                                     | 7.85.109                                                                             |         |
| Crotonaldehyde         | 5.53.107                                                                | $8.72 \cdot 10^8$                                                                    |         |
| Benzaldehyde           | $2.19 \cdot 10^{8}$                                                     | 5.23.109                                                                             |         |
| p-Tolualdehyde         | 9.69.107                                                                | 2.62.109                                                                             |         |
| Glyoxal                | $1.67 \cdot 10^{8}$                                                     | $2.18 \cdot 10^9$                                                                    |         |
| Methylglyoxal          | $1.08 \cdot 10^{8}$                                                     | $1.74 \cdot 10^{9}$                                                                  |         |
| Organic acids          |                                                                         |                                                                                      |         |

| Compound         | moderate emission rate<br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | strong emission rate <sup>112</sup><br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | Comment |
|------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------|
| Formic acid      | 1.83.106                                                                | -                                                                                    |         |
| Acetic acid      | 2.80.107                                                                | $8.44 \cdot 10^9$                                                                    |         |
| Benzoic acid     | 6.89·10 <sup>5</sup>                                                    | -                                                                                    |         |
| Ketones          |                                                                         |                                                                                      |         |
| Propanone        | $1.36 \cdot 10^{10}$                                                    | $5.11 \cdot 10^{10}$                                                                 |         |
| Butanone         | $1.01 \cdot 10^{10}$                                                    | $4.71 \cdot 10^{10}$                                                                 |         |
| Hexanone         | 6.66·10 <sup>7</sup>                                                    | $4.32 \cdot 10^8$                                                                    |         |
| Cyclohexanone    | 6.80·10 <sup>7</sup>                                                    | $4.32 \cdot 10^{8}$                                                                  |         |
| Alcohols         |                                                                         |                                                                                      |         |
| Methanol         | $5.21 \cdot 10^8$                                                       | 1.16.1011                                                                            |         |
| Ethanol          | 1.83.1010                                                               | 4.03.1011                                                                            |         |
| Propanol         | $1.22 \cdot 10^{7}$                                                     | $4.27 \cdot 10^{8}$                                                                  |         |
| i-Propanol       | $4.82 \cdot 10^9$                                                       | $1.15 \cdot 10^{11}$                                                                 |         |
| Butanol          | 8.00.107                                                                | 2.35.109                                                                             |         |
| i-Butanol        | $7.28 \cdot 10^7$                                                       | $2.41 \cdot 10^8$                                                                    |         |
| Glycol           | $1.65 \cdot 10^9$                                                       | $4.57 \cdot 10^{10}$                                                                 |         |
| Propylene glycol | $3.97 \cdot 10^9$                                                       | $1.35 \cdot 10^{10}$                                                                 |         |
| Cyclohexanol     | 5.38.107                                                                | $2.41 \cdot 10^{8}$                                                                  |         |
| Phenol           | $7.06 \cdot 10^8$                                                       | $1.09 \cdot 10^{11}$                                                                 |         |
| Ether            |                                                                         |                                                                                      |         |
| Dimethyl ether   | 1.49.109                                                                | $1.19 \cdot 10^{10}$                                                                 |         |
| Diethyl ether    | $5.09 \cdot 10^8$                                                       | 1.68·10 <sup>9</sup>                                                                 |         |
| Methyl glycol    | 7.23.109                                                                | $2.45 \cdot 10^{10}$                                                                 |         |
| Ethylene oxide   | $4.73 \cdot 10^7$                                                       | $3.62 \cdot 10^{8}$                                                                  |         |
| Ethyl ethanoate  | $1.61 \cdot 10^{8}$                                                     | 2.46·10 <sup>9</sup>                                                                 |         |
| Methyl acetate   | $8.44 \cdot 10^{7}$                                                     | $1.09 \cdot 10^9$                                                                    |         |

| Compound             | moderate emission rate<br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | strong emission rate <sup>112</sup><br>(molecules cm <sup>-2</sup> s <sup>-1</sup> ) | Comment                         |
|----------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|
| Isopropylacetate     | $6.84 \cdot 10^8$                                                       | $1.21 \cdot 10^{10}$                                                                 |                                 |
| Butyl acetate        | 8.35.108                                                                | 3.84.1010                                                                            |                                 |
| Propyl acetate       | $2.64 \cdot 10^8$                                                       | $1.07 \cdot 10^{10}$                                                                 |                                 |
| Monoterpenes         |                                                                         |                                                                                      |                                 |
| α-Pinene             | 4.40·10 <sup>7</sup>                                                    | $1.88 \cdot 10^{10}$                                                                 |                                 |
| β-Pinene             | $4.17 \cdot 10^7$                                                       | -                                                                                    |                                 |
| Limonene             | $5.02 \cdot 10^{6}$                                                     | $1.88 \cdot 10^{10}$                                                                 |                                 |
| Halogenated organics |                                                                         |                                                                                      |                                 |
| Chloromethane        | 9.15·10 <sup>9</sup>                                                    | 1.10.109                                                                             |                                 |
| Dichloromethane      | 3.25.109                                                                | $2.05 \cdot 10^{10}$                                                                 |                                 |
| Trichloromethane     | $2.67 \cdot 10^8$                                                       | 1.30.108                                                                             | McCulloch et al. <sup>114</sup> |
| Trichlororethane     | 2.37·10 <sup>9</sup>                                                    | $6.44 \cdot 10^{7}$                                                                  |                                 |
| 1,2-Dichloroethane   | $5.12 \cdot 10^{6}$                                                     | $5.12 \cdot 10^{6}$                                                                  |                                 |
| Chloroethene         | 3.36.108                                                                | 8.32.109                                                                             |                                 |
| Trichloroethene      | $8.01 \cdot 10^8$                                                       | $3.25 \cdot 10^8$                                                                    |                                 |
| Tetrachloroethene    | 9.55·10 <sup>8</sup>                                                    | $8.63 \cdot 10^8$                                                                    |                                 |
| Vinyltrichloride     | 5.60·10 <sup>8</sup>                                                    | 5.60.108                                                                             |                                 |
| Bromomethane         | 1.44.107                                                                | 1.44.107                                                                             | Yokouchi et al. 115             |

|               |       | Gas phase       |                |        |                 | Α              | queous phas | se                |          |                 |
|---------------|-------|-----------------|----------------|--------|-----------------|----------------|-------------|-------------------|----------|-----------------|
|               | OH    | NO <sub>3</sub> | O <sub>3</sub> | OH     | NO <sub>3</sub> | O <sub>3</sub> | Cl          | Cl <sub>2</sub> - | $SO_4^-$ | HO <sub>2</sub> |
| Phenol        |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 33.6% | 57.7%           | -              | 4.3%   | 1.3%            | 0.0%           | 0.7%        | 0.1%              | 2.3%     | -               |
| Cloud         | 19.7% | 24.9%           | -              | 27.5%  | 8.3%            | 0.1%           | 4.6%        | 0.5%              | 14.4%    | -               |
| Non-cloud     | 36.1% | 63.9%           | -              | 0.0%   | 0.0%            | 0.0%           | 0.0%        | 0.0%              | 0.0%     | -               |
| Catechol      |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 20.9% | 49.8%           | 1.7%           | 7.7%   | 0.3%            | 14.0%          | -           | -                 | 0.1%     | 5.6%            |
| Cloud         | 0.6%  | 3.5%            | 0.1%           | 26.8%  | 1.0%            | 48.6%          | -           | -                 | 0.3%     | 19.2%           |
| Non-cloud     | 29.1% | 68.5%           | 2.3%           | 0.0%   | 0.0%            | 0.1%           | -           | -                 | 0.0%     | 0.0%            |
| Nitrophenol   |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 22.6% | 56.9%           | -              | 12.5%  | 6.8%            | -              | -           | -                 | 1.2%     | -               |
| Cloud         | 7.8%  | 17.3%           | -              | 45.7%  | 24.9%           | -              | -           | -                 | 4.3%     | -               |
| Non-cloud     | 28.1% | 71.9%           | -              | 0.0    | 0.0%            | -              | -           | -                 | 0.0%     | -               |
| Dinitrophenol |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 1.2%  | 2.1%            | -              | 95.7%  | -               | -              | -           | -                 | -        | -               |
| Cloud         | 0.1%  | 0.2%            | -              | 99.7%  | -               | -              | -           | -                 | -        | -               |
| Non-cloud     | 35.8% | 64.2%           | -              | 0.1%   | -               | -              | -           | -                 | -        | -               |
| Nitrocatechol |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 2.4%  | 44.1%           | -              | 53.5%  | -               | -              | -           | -                 | -        | -               |
| Cloud         | 0.0%  | 0.0%            | -              | 100.0% | -               | -              | -           | -                 | -        | -               |
| Non-cloud     | 5.1%  | 93.6%           | -              | 1.4%   | -               | -              | -           | -                 | -        | -               |
| Cresol        |       |                 |                |        |                 |                |             |                   |          |                 |
| Overall       | 33.9% | 61.1%           | -              | 4.3%   | 0.4%            | 0.1%           | -           | 0.0%              | 0.3%     | -               |
| Cloud         | 24.1% | 40.9%           | -              | 29.4%  | 3.1%            | 0.7%           | -           | 0.0%              | 1.9%     | -               |
| Non-cloud     | 35.5% | 64.5%           | -              | 0.0%   | 0.0%            | 0.0%           | -           | 0.0%              | 0.0%     | -               |
|               |       |                 |                |        |                 |                |             |                   |          |                 |

**Table S7** Contribution of different oxidants to the oxidation of aromatic compounds in gas and aqueous phase in the moderately polluted urban environment. If oxidants contribute more than 10% to aqueous-phase oxidation they are marked bold.

|                |       | Gas phase       |                |       |                 | L              | Aqueous phas | e                 |      |                 |
|----------------|-------|-----------------|----------------|-------|-----------------|----------------|--------------|-------------------|------|-----------------|
|                | OH    | NO <sub>3</sub> | O <sub>3</sub> | OH    | NO <sub>3</sub> | O <sub>3</sub> | Cl           | Cl <sub>2</sub> - | SO4- | HO <sub>2</sub> |
| Methylcatechol |       |                 |                |       |                 |                |              |                   |      |                 |
| Overall        | 22.4% | 50.3%           | 3.0%           | 24.3% | -               | -              | -            | -                 | -    | -               |
| Cloud          | 1.7%  | 7.2%            | 0.6%           | 90.5% | -               | -              | -            | -                 | -    | -               |
| Non-cloud      | 30.0% | 66.1%           | 3.9%           | 0.0%  | -               | -              | -            | -                 | -    | -               |
| Nitrocresol    |       |                 |                |       |                 |                |              |                   |      |                 |
| Overall        | 22.8% | 76.8%           | -              | 0.3%  | 0.0%            | -              | -            | 0.0%              | 0.0% | -               |
| Cloud          | 24.5% | 71.4%           | -              | 3.8%  | 0.2%            | -              | -            | 0.1%              | 0.0% | -               |
| Non-cloud      | 22.6% | 77.4%           | -              | 0.0%  | 0.0%            | -              | -            | 0.0%              | 0.0% | -               |
| Benzoic acid   |       |                 |                |       |                 |                |              |                   |      |                 |
| Overall        | 8.3%  | -               | -              | 44.9% | 10.4%           | -              | 34.7%        | 0.0%              | 1.7% | -               |
| Cloud          | 0.6%  | -               | -              | 48.7% | 11.2%           | -              | 37.6%        | 0.0%              | 6.0% | -               |
| Non-cloud      | 99.8% | -               | -              | 0.0%  | 0.0%            | -              | 0.2%         | 0.0%              | 0.0% | -               |

|               |       | Gas phase       |                |       |                 | A              | queous phas | se                |          |                 |
|---------------|-------|-----------------|----------------|-------|-----------------|----------------|-------------|-------------------|----------|-----------------|
|               | OH    | NO <sub>3</sub> | O <sub>3</sub> | OH    | NO <sub>3</sub> | O <sub>3</sub> | Cl          | Cl <sub>2</sub> - | $SO_4^-$ | HO <sub>2</sub> |
| Phenol        |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 21.1% | 76.0%           | -              | 0.3%  | 2.0%            | 0.0%           | 0.0%        | 0.0%              | 0.6%     | -               |
| Cloud         | 11.3% | 61.5%           | -              | 2.7%  | 18.6%           | 0.2%           | 0.2%        | 0.0%              | 5.5%     | -               |
| Non-cloud     | 22.2% | 77.8%           | -              | 0.0%  | 0.0%            | 0.0%           | 0.0%        | 0.0%              | 0.0%     |                 |
| Catechol      |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 11.5% | 68.3%           | 1.9%           | 0.3%  | 0.3%            | 13.3%          | -           | -                 | 0.0%     | 4.4%            |
| Cloud         | 0.2%  | 5.8%            | 0.2%           | 1.8%  | 1.5%            | 68.1%          | -           | -                 | 0.1%     | 22.4%           |
| Non-cloud     | 14.2% | 83.4%           | 2.3%           | 0.0%  | 0.0%            | 0.1%           | -           | -                 | 0.0%     | 0.0%            |
| Nitrophenol   |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 14.7% | 75.3%           | -              | 0.5%  | 9.3%            | -              | -           | -                 | 0.2%     | -               |
| Cloud         | 3.8%  | 40.2%           | -              | 2.7%  | 51.8%           | -              | -           | -                 | 1.3%     | -               |
| Non-cloud     | 17.0% | 83.0%           | -              | 0.0   | 0.0%            | -              | -           | -                 | 0.0%     | -               |
| Dinitrophenol |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 10.8% | 42.6%           | -              | 38.6% | -               | -              | -           | -                 | -        | -               |
| Cloud         | 0.8%  | 7.2%            | -              | 76.4% | -               | -              | -           | -                 | -        | -               |
| Non-cloud     | 21.1% | 78.8%           | -              | 0.0%  | -               | -              | -           | -                 | -        | -               |
| Nitrocatechol |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 3.5%  | 84.9%           | -              | 11.6% | -               | -              | -           | -                 | -        | -               |
| Cloud         | 0.0%  | 0.2%            | -              | 99.8% | -               | -              | -           | -                 | -        | -               |
| Non-cloud     | 3.9%  | 95.4%           | -              | 0.7%  | -               | -              | -           | -                 | -        | -               |
| Cresol        |       |                 |                |       |                 |                |             |                   |          |                 |
| Overall       | 24.3% | 74.7%           | -              | 0.2%  | 0.5%            | 0.1%           | -           | 0.0%              | 0.1%     | -               |
| Cloud         | 12.4% | 78.5%           | -              | 2.1%  | 5.1%            | 1.3%           | -           | 0.0%              | 0.7%     | -               |
| Non-cloud     | 25.7% | 74.3%           | -              | 0.0%  | 0.0%            | 0.0%           | -           | 0.0%              | 0.0%     | -               |
|               |       |                 |                |       |                 |                |             |                   |          |                 |

**Table S8** Contribution of different oxidants to the oxidation of aromatic compounds in gas and aqueous phase in the strongly polluted urban environment. If oxidants contribute more than 10% to aqueous-phase oxidation they are marked bold.

|        | Gas phase                                                                         |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Aqueous phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OH     | NO <sub>3</sub>                                                                   | O <sub>3</sub>                                                                                                                                                                                                                                                                                     | OH                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                      | O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cl <sub>2</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $SO_4$                                                                                                                                                                                                                                                                           | HO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15.0%  | 78.8%                                                                             | 4.2%                                                                                                                                                                                                                                                                                               | 1.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.7%   | 61.6%                                                                             | 4.8%                                                                                                                                                                                                                                                                                               | 29.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15.8%  | 80.0%                                                                             | 4.2%                                                                                                                                                                                                                                                                                               | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13.7%  | 86.3%                                                                             | -                                                                                                                                                                                                                                                                                                  | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.0%   | 92.7%                                                                             | -                                                                                                                                                                                                                                                                                                  | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.3%  | 85.7%                                                                             | -                                                                                                                                                                                                                                                                                                  | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 30.8%  | -                                                                                 | -                                                                                                                                                                                                                                                                                                  | 9.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.2%                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.6%   | -                                                                                 | -                                                                                                                                                                                                                                                                                                  | 13.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.3%                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.0%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100.0% | -                                                                                 | -                                                                                                                                                                                                                                                                                                  | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0%                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •<br>• | OH<br>15.0%<br>3.7%<br>15.8%<br>13.7%<br>7.0%<br>14.3%<br>30.8%<br>0.6%<br>100.0% | Gas phase           OH         NO3           15.0%         78.8%           3.7%         61.6%           15.8%         80.0%           13.7%         86.3%           7.0%         92.7%           14.3%         85.7%           30.8%         -           0.6%         -           100.0%         - | Gas phase           OH         NO3         O3           15.0%         78.8%         4.2%           3.7%         61.6%         4.8%           15.8%         80.0%         4.2%           13.7%         61.6%         4.8%           13.7%         86.3%         -           7.0%         92.7%         -           14.3%         85.7%         -           30.8%         -         -           0.6%         -         -           100.0%         -         - | Gas phase           OH         NO <sub>3</sub> O <sub>3</sub> OH $15.0\%$ $78.8\%$ $4.2\%$ $1.9\%$ $15.0\%$ $78.8\%$ $4.2\%$ $1.9\%$ $3.7\%$ $61.6\%$ $4.8\%$ <b>29.9%</b> $15.8\%$ $80.0\%$ $4.2\%$ $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $30.8\%$ -         - $9.5\%$ $0.6\%$ -         - $13.4\%$ $100.0\%$ -         - $0.0\%$ | Gas phase           OH         NO3         O3         OH         NO3 $15.0\%$ $78.8\%$ $4.2\%$ $1.9\%$ - $3.7\%$ $61.6\%$ $4.8\%$ <b>29.9%</b> - $15.8\%$ $80.0\%$ $4.2\%$ $0.0\%$ - $13.7\%$ $61.6\%$ $4.8\%$ <b>29.9%</b> - $13.7\%$ $86.3\%$ - $0.0\%$ - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ $14.3\%$ $85.7\%$ - $0.0\%$ $0.0\%$ $30.8\%$ -         - $9.5\%$ $52.2\%$ $0.6\%$ -         - $13.4\%$ $74.3\%$ $100.0\%$ -         - $0.0\%$ $0.0\%$ | Gas phase         A           OH         NO3         O3         OH         NO3         O3         O3         OH         NO3         O3         O3         OH         NO3         O3         O3         O3         O4         NO3         O3         O3 $15.0\%$ $78.8\%$ $4.2\%$ $1.9\%$ -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td>Aqueous phase           OH         NO3         O3         OH         NO3         O3         Cl           <math>0H</math>         NO3         O3         OH         NO3         O3         Cl           <math>15.0\%</math> <math>78.8\%</math> <math>4.2\%</math> <math>1.9\%</math>         -         -         -           <math>3.7\%</math> <math>61.6\%</math> <math>4.8\%</math> <b>29.9%</b>         -         -         -           <math>15.8\%</math> <math>80.0\%</math> <math>4.2\%</math> <math>0.0\%</math>         -         -         -           <math>13.7\%</math> <math>86.3\%</math>         -         <math>0.0\%</math> <math>0.0\%</math>         -         -           <math>30.8\%</math>         -         -         <math>9.5\%</math> <math>52.2\%</math>         -         <math>6.1\%</math> <math>0.6\%</math>         -         -         <math>13.4\%</math>&lt;</td> <td>Aqueous phaseOHNO3O3OHNO3O3Cl<math>Cl_2^-</math>15.0%78.8%4.2%1.9%3.7%61.6%4.8%<b>29.9%</b>15.8%80.0%4.2%0.0%13.7%86.3%-0.0%0.0%0.0%13.7%86.3%-0.1%0.2%0.0%13.7%86.3%-0.1%0.2%0.0%13.7%86.3%-0.1%0.2%0.0%30.8%9.5%<b>52.2%</b>-6.1%0.0%0.6%13.4%74.3%-8.7%0.0%100.0%0.0%0.0%-0.2%0.0%</td> <td>Aqueous phase           OH         NO3         O3         OH         NO3         O3         Cl         Cl2<sup>-</sup>         SO4<sup>-</sup>           15.0%         78.8%         4.2%         1.9%         -         -         -         -         -           3.7%         61.6%         4.8%         <b>29.9%</b>         -         -         -         -         -           15.8%         80.0%         4.2%         0.0%         -         -         -         -         -         -           15.8%         80.0%         4.2%         0.0%         -         -         -         -         -         -           13.7%         86.3%         -         0.0%         0.0%         -         -         0.0%         0.0%           7.0%         92.7%         -         0.1%         0.2%         -         -         0.0%         0.0%           14.3%         85.7%         -         0.1%         0.2%         -         -         0.0%         0.0%           0.6%         -         -         9.5%         <b>52.2%</b>         -         6.1%         0.0%         2.0%           0.6%         -         -</td> | Aqueous phase           OH         NO3         O3         OH         NO3         O3         Cl $0H$ NO3         O3         OH         NO3         O3         Cl $15.0\%$ $78.8\%$ $4.2\%$ $1.9\%$ -         -         - $3.7\%$ $61.6\%$ $4.8\%$ <b>29.9%</b> -         -         - $15.8\%$ $80.0\%$ $4.2\%$ $0.0\%$ -         -         - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ -         - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ -         - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ -         - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ -         - $13.7\%$ $86.3\%$ - $0.0\%$ $0.0\%$ -         - $30.8\%$ -         - $9.5\%$ $52.2\%$ - $6.1\%$ $0.6\%$ -         - $13.4\%$ < | Aqueous phaseOHNO3O3OHNO3O3Cl $Cl_2^-$ 15.0%78.8%4.2%1.9%3.7%61.6%4.8% <b>29.9%</b> 15.8%80.0%4.2%0.0%13.7%86.3%-0.0%0.0%0.0%13.7%86.3%-0.1%0.2%0.0%13.7%86.3%-0.1%0.2%0.0%13.7%86.3%-0.1%0.2%0.0%30.8%9.5% <b>52.2%</b> -6.1%0.0%0.6%13.4%74.3%-8.7%0.0%100.0%0.0%0.0%-0.2%0.0% | Aqueous phase           OH         NO3         O3         OH         NO3         O3         Cl         Cl2 <sup>-</sup> SO4 <sup>-</sup> 15.0%         78.8%         4.2%         1.9%         -         -         -         -         -           3.7%         61.6%         4.8% <b>29.9%</b> -         -         -         -         -           15.8%         80.0%         4.2%         0.0%         -         -         -         -         -         -           15.8%         80.0%         4.2%         0.0%         -         -         -         -         -         -           13.7%         86.3%         -         0.0%         0.0%         -         -         0.0%         0.0%           7.0%         92.7%         -         0.1%         0.2%         -         -         0.0%         0.0%           14.3%         85.7%         -         0.1%         0.2%         -         -         0.0%         0.0%           0.6%         -         -         9.5% <b>52.2%</b> -         6.1%         0.0%         2.0%           0.6%         -         - |



Figure S1 Schematic description of the oxidation of phenol implemented in the AM1.0 into nitrated aromatics as well as ring-opening products.



 $\begin{array}{|c|c|c|c|c|c|} \hline OH_{(gas)} & OO_{3(gas)} & O_{3(gas)} \\ \hline OH_{(aq)} & OO_{3(aq)} & O_{3(aq)} & OI_{(aq)} & OI_{2^{-}(aq)} & OO_{4^{-}(aq)} & HO_{20q} \\ \hline OH_{(aq)} & OO_{3(aq)} & OO$ 

**Figure S2** Depiction of the contribution of different oxidants to the degradation of specific substituted aromatic compounds in gas and aqueous phase at the 'strongly polluted' environmental scenario. The contribution is calculated for the whole simulation time using the overall mean of the different oxidants.



**Figure S3** Modelled time-resolved sink and source fluxes of the 'moderately polluted' (a) and the 'strongly polluted' (b) environmental scenario at summer conditions. Positive Fluxes describe formation and negative fluxes contribute to the degradation of CRESHCHD, the radical cation, and the phenoxyl radical in the aqueous phase. The sink and source fluxes are given for the second model day. Grey shaded bars denote the night periods and light blue bars the cloud periods.



Figure S4 Gas-phase concentration time profile of the NO<sub>3</sub> radical over the whole simulation time under summer conditions for both urban environments.



Figure S5 Aqueous-phase concentration time profile of the OH radical over the whole simulation time under summer conditions for both urban environments.



Figure S6 Evolution of organic mass in the aqueous phase in the 'moderately polluted' urban environment at wintertime over the whole simulation time in  $\mu$ g m<sup>-3</sup>.



Figure S7 Evolution of organic mass in the aqueous phase in the 'strongly polluted' urban environment at wintertime over the whole simulation time in  $\mu$ g m<sup>-3</sup>.



**Figure S8** Depiction of multiphase source and sink fluxes (in  $10^{11}$  molecules cm<sup>-3</sup> s<sup>-1</sup>) leading to the formation of nitrocatechol over the full simulation time of the moderately polluted urban environment. Only oxidation fluxes exceeding 5% of the total flux are included. The width of arrows indicates the magnitude of the mass flux. Red arrows represent emission fluxes, brown arrows represent gas-phase oxidation, blue arrows aqueous-phase oxidation, and green arrows corresponding phase transfer processes.

## References

- 1. V. Feigenbrugel, S. Le Calvé, P. Mirabel and F. Louis, Atmospheric Environment, 2004, 38, 5577-5588.
- 2. M. R. Heal, M. J. Pilling, P. E. Titcombe and B. J. Whitaker, *Geophys Res Lett*, 1995, 22, 3043-3046.
- 3. E. N. Fuller, Schettle.Pd and J. C. Giddings, Ind. Eng. Chem., 1966, 58, 19-27.
- 4. R. Sander, Atmospheric Chemistry and Physics, 2015, 15, 4399-4981.
- 5. N. Lahoutifard, M. Ammann, L. Gutzwiller, B. Ervens and C. George, *Atmospheric Chemistry and Physics*, 2002, 2, 215-226.
- 6. J. Altschuh, R. Bruggemann, H. Santl, G. Eichinger and O. G. Piringer, *Chemosphere*, 1999, 39, 1871-1887.
- 7. L. Allou, L. El Maimouni and S. Le Calvé, Atmospheric Environment, 2011, 45, 2991-2998.
- 8. H. X. Li, D. Ellis and D. Mackay, *J Chem Eng Data*, 2007, 52, 1580-1584.
- 9. X. X. Guo and P. Brimblecombe, *Chemosphere*, 2007, 68, 436-444.
- 10. G. Leyssens, F. Louis and J. P. Sawerysyn, J Phys Chem A, 2005, 109, 1864-1872.
- 11. J. Tremp, P. Mattrel, S. Fingler and W. Giger, Water Air Soil Poll, 1993, 68, 113-123.
- 12. W. T. Dixon and D. Murphy, J Chem Soc Perk T 2, 1975, DOI: DOI 10.1039/p29750000850, 850-853.
- 13. K. Sehested and J. Holcman, J Phys Chem-Us, 1978, 82, 651-653.
- 14. K. Sehested, J. Holcman and E. J. Hart, J Phys Chem-Us, 1977, 81, 1363-1367.
- 15. R. M. Milburn, J Am Chem Soc, 1955, 77, 2064-2067.
- 16. K. Nakamura, T. Tsuchida, Yamagish.A and M. Fujimoto, B Chem Soc Jpn, 1973, 46, 456-459.
- 17. E. Mentasti and E. Pelizzetti, J Chem Soc Dalton, 1973, DOI: DOI 10.1039/dt9730002605, 2605-2608.
- 18. S. C. Choure, M. M. M. Bamatraf, B. S. M. Rao, R. Das, H. Mohan and J. P. Mittal, *J Phys Chem A*, 1997, 101, 9837-9845.
- 19. S. Steenken and R. Ramaraj, J Chem Soc Perk T 2, 2001, DOI: DOI 10.1039/b102515p, 1613-1619.
- 20. P. Greenzaid, J Org Chem, 1973, 38, 3164-3167.
- 21. C. K. Remucal and D. Manley, Environ Sci-Wat Res, 2016, 2, 565-579.
- 22. M. V. Park, J Chem Soc A, 1966, DOI: DOI 10.1039/j19660000816, 816-&.
- 23. A. Avdeef, S. R. Sofen, T. L. Bregante and K. N. Raymond, J Am Chem Soc, 1978, 100, 5362-5370.
- 24. J. H. Xu and R. B. Jordan, *Inorg Chem*, 1988, 27, 1502-1507.
- 25. P. Dwibedy, G. R. Dey, D. B. Naik, K. Kishore and P. N. Moorthy, *Physical Chemistry Chemical Physics*, 1999, 1, 1915-1918.
- 26. M. J. Hynes and M. O Coinceanainn, J Inorg Biochem, 2001, 85, 131-142.
- 27. L. Valgimigli, R. Amorati, M. G. Fumo, G. A. DiLabio, G. F. Pedulli, K. U. Ingold and D. A. Pratt, J Org Chem, 2008, 73, 1830-1841.
- 28. M. Deborde and U. von Gunten, *Water Research*, 2008, 42, 13-51.
- 29. N. V. Raghavan and S. Steenken, J Am Chem Soc, 1980, 102, 3495-3499.
- 30. J. Bonin, I. Janik, D. Janik and D. M. Bartels, *J Phys Chem A*, 2007, 111, 1869-1878.

- 31. T. Umschlag, R. Zellner and H. Herrmann, *Physical Chemistry Chemical Physics*, 2002, 4, 2975-2982.
- 32. J. Ziajka and W. Pasiuk-Bronikowska, Atmospheric Environment, 2005, 39, 1431-1438.
- 33. Z. B. Alfassi, S. Mosseri and P. Neta, J Phys Chem-Us, 1989, 93, 1380-1385.
- 34. D. Vione, V. Maurino, C. Minero, P. Calza and E. Pelizzetti, Env. Sci. Tech., 2005, 39, 5066-5075.
- 35. Z. B. Alfassi, R. E. Huie, P. Neta and L. C. T. Shoute, J Phys Chem-Us, 1990, 94, 8800-8805.
- 36. S. N. Chen and M. Z. Hoffman, Radiat Res, 1973, 56, 40-47.
- 37. D. Vione, S. Belmondo and L. Carnino, *Environ Chem Lett*, 2004, 2, 135-139.
- 38. M. R. Heal, M. A. J. Harrison and J. N. Cape, Atmospheric Environment, 2007, 41, 3515-3520.
- 39. E. Mvula and C. von Sonntag, Org Biomol Chem, 2003, 1, 1749-1756.
- 40. J. Hoigne and H. Bader, *Water Research*, 1983, 17, 173-183.
- 41. H. Gallard and U. Von Gunten, Env. Sci. Tech., 2002, 36, 884-890.
- 42. H. Gallard, F. Pellizzari, J. P. Croue and B. Legube, *Water Research*, 2003, 37, 2883-2892.
- 43. C. Walling, D. M. Camaioni and S. S. Kim, J Am Chem Soc, 1978, 100, 4814-4818.
- 44. D. O. Martire, J. A. Rosso, S. Bertolotti, G. C. Le Roux, A. M. Braun and M. C. Gonzalez, J Phys Chem A, 2001, 105, 5385-5392.
- 45. P. Calza, V. Maurino, C. Minero, E. Pelizzetti, M. Sega and A. Vincenti, J Photoch Photobio A, 2005, 170, 61-67.
- 46. D. Vione, B. Sur, B. K. Dutta, V. Maurino and C. Minero, *J Photoch Photobio A*, 2011, 224, 68-70.
- 47. A. Alif, J. F. Pilichowski and P. Boule, J Photoch Photobio A, 1991, 59, 209-219.
- 48. P. Barzaghi and H. Herrmann, *Physical Chemistry Chemical Physics*, 2002, 4, 3669-3675.
- 49. E. Mvula, M. N. Schuchmann and C. von Sonntag, J Chem Soc Perk T 2, 2001, DOI: DOI 10.1039/b0084340, 264-268.
- 50. D. I. Metelitsa, Russian Chemical Reviews, 1971, 40, 563-580.
- 51. A. Mantaka, D. G. Marketos and G. Stein, J Phys Chem-Us, 1971, 75, 3886-&.
- 52. C. K. Scheck and F. H. Frimmel, *Water Research*, 1995, 29, 2346-2352.
- 53. J. D. Smith, H. Kinney and C. Anastasio, *Physical Chemistry Chemical Physics*, 2015, 17, 10227-10237.
- 54. P. Barzaghi and H. Herrmann, *Physical Chemistry Chemical Physics*, 2004, 6, 5379.
- 55. H. Herrmann, D. Hoffmann, T. Schaefer, P. Brauer and A. Tilgner, Chemphyschem, 2010, 11, 3796-3822.
- 56. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, Journal of Physical and Chemical Reference Data, 1985, 14, 1041-1100.
- 57. L. Khalafi and M. Rafiee, Journal of Hazardous Materials, 2010, 174, 801-806.
- 58. T. Arakaki, K. Saito, K. Okada, H. Nakajima and Y. Hitomi, Chemosphere, 2010, 78, 1023-1027.
- 59. M. A. Oturan, J. Peiroten, P. Chartrin and A. J. Acher, *Env. Sci. Tech.*, 2000, 34, 3474-3479.
- 60. A. D. Nadezhdin and H. B. Dunford, Can J Chem, 1979, 57, 3017-3022.
- 61. P. S. Rao and E. Hayon, J Phys Chem-Us, 1975, 79, 397-402.
- 62. M. N. Schuchmann, E. Bothe, J. von Sonntag and C. von Sonntag, J Chem Soc Perk T 2, 1998, DOI: DOI 10.1039/a708772a, 791-796.

- 63. J. Criquet and N. K. V. Leitner, Radiation Physics and Chemistry, 2015, 106, 307-314.
- 64. P. Neta and J. Grodkowski, *Journal of Physical and Chemical Reference Data*, 2005, 34, 109-199.
- 65. G. E. Adams and B. D. Michael, *T Faraday Soc*, 1967, 63, 1171-&.
- 66. H. Gallard and U. von Gunten, Water Research, 2002, 36, 65-74.
- 67. S. Echigo and R. A. Minear, Water Sci Technol, 2006, 53, 235-243.
- 68. J. L. Acero, P. Piriou and U. von Gunten, *Water Research*, 2005, 39, 2979-2993.
- 69. T. Q. Zhang, L. Cheng, L. Ma, F. C. Meng, R. G. Arnold and A. E. Saez, *Chemosphere*, 2016, 161, 349-357.
- 70. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Journal of Physical and Chemical Reference Data, 1988, 17, 513-886.
- 71. H. Herrmann, Essen, 1997.
- 72. Z. B. Alfassi, R. E. Huie and P. Neta, J Phys Chem-Us, 1986, 90, 4156-4158.
- 73. A. Kroflic, M. Grilc and I. Grgic, Env. Sci. Tech., 2015, 49, 9150-9158.
- 74. Y. Zheng and C. H. Kuo, Chem Eng Commun, 1996, 145, 33-51.
- 75. G. Merga, H. P. Schuchmann, B. S. M. Rao and C. vonSonntag, J Chem Soc Perk T 2, 1996, DOI: DOI 10.1039/p29960001097, 1097-1103.
- 76. X. W. Fang, X. M. Pan, A. J. Rahmann, H. P. Schuchmann and C. Vonsonntag, *Chem-Eur J*, 1995, 1, 423-429.
- 77. A. Tilgner and H. Herrmann, Atmospheric Environment, 2010, 44, 5415-5422.
- 78. P. Bräuer, Leipzig, 2015.
- 79. M. Gohn and N. Getoff, J Chem Soc Farad T 1, 1977, 73, 1207-1215.
- 80. K. Eiben, Schultef.D, C. Suarez and H. Zorn, Int J Radiat Phys Ch, 1971, 3, 409-&.
- 81. B. Cercek and M. Ebert, Adv Chem Ser, 1968, 210-+.
- 82. D. Hoffmann, PhD, Leipzig, 2007.
- 83. M. B. Heeb, J. Criquet, S. G. Zimmermann-Steffens and U. von Gunten, Water Research, 2014, 48, 15-42.
- 84. K. Tanaka, W. Luesaiwong and T. Hisanaga, J Mol Catal a-Chem, 1997, 122, 67-74.
- 85. D. Vione, V. Maurino, C. Minero, M. Duncianu, R. I. Olariu, C. Arsene, M. Sarakha and G. Mailhot, *Atmospheric Environment*, 2009, 43, 2321-2327.
- 86. C. Weller, D. Hoffmann, T. Schaefer and H. Herrmann, Z Phys Chem, 2010, 224, 1261-1287.
- 87. A. Albinet, C. Minero and D. Vione, Chemosphere, 2010, 80, 753-758.
- 88. B. Rindone, J. Hjorth, M. Pilling, H. Herrmann, W. Behnke and C. Zetzsch, *Uptake and nitration of aromatics in the tropospheric aqueous phase (UNARO)*, Universita' di Milano, 1999.
- 89. A. Walter, Diploma, Leipzig, 2000.
- 90. C. vonSonntag, P. Dowideit, X. W. Fang, R. Mertens, X. M. Pan, M. N. Schuchmann and H. P. Schuchmann, *Water Sci Technol*, 1997, 35, 9-15.
- 91. O. Ito, S. Akiho and M. Iino, B Chem Soc Jpn, 1989, 62, 1606-1611.

- 92. S. B. Dhiman and D. B. Naik, J Phys Org Chem, 2010, 23, 48-55.
- 93. S. B. Sharma, M. Mudaliar, B. S. M. Rao, H. Mohan and J. P. Mittal, J Phys Chem A, 1997, 101, 8402-8408.
- 94. S. Geeta, S. B. Sharma, B. S. M. Rao, H. Mohan, S. Dhanya and J. P. Mittal, J Photoch Photobio A, 2001, 140, 99-107.
- 95. Y. W. Deng, K. Zhang, H. Chen, T. X. Wu, M. Krzyaniak, A. Wellons, D. Bolla, K. Douglas and Y. G. Zuo, *Atmospheric Environment*, 2006, 40, 3665-3676.
- 96. P. Neta, V. Madhavan, H. Zemel and R. W. Fessenden, J Am Chem Soc, 1977, 99, 163-164.
- 97. K. Hasegawa and P. Neta, J Phys Chem-Us, 1978, 82, 854-857.
- 98. G. W. Klein, K. Bhatia, V. Madhavan and R. H. Schuler, J Phys Chem-Us, 1975, 79, 1767-1774.
- 99. X. Huang, X. Li, B. Pan, H. Li, Y. Zhang and B. Xie, *Water Res*, 2015, 73, 9-16.
- 100. D. B. Patil, G. J. Thakur and P. M. Shende, Asian J Chem, 2010, 22, 5072-5076.
- 101. F. J. Benitez, J. Beltran-Heredia, J. A. Peres and J. R. Dominguez, Journal of Hazardous Materials, 2000, 73, 161-178.
- 102. P. S. M. Santos, M. R. M. Domingues and A. C. Duarte, Chemosphere, 2016, 154, 599-603.
- 103. K. Kishore and T. Mukherjee, Radiation Physics and Chemistry, 2006, 75, 14-19.
- 104. C. K. Duesteberg and T. D. Waite, Env. Sci. Tech., 2007, 41, 4103-4110.
- 105. P. Caregnato, P. M. D. Gara, G. N. Bosio, M. C. Gonzalez, N. Russo, M. D. C. Michelini and D. O. Martire, *J Phys Chem A*, 2008, 112, 1188-1194.
- 106. F. J. Beltrán, O. Gimeno, F. J. Rivas and M. Carbajo, Journal of Chemical Technology & Biotechnology, 2006, 81, 1787-1796.
- 107. F. J. Beltran, J. F. Garcia-Araya, F. J. Rivas, P. Alvarez and E. Rodriguez, Ozone-Sci Eng, 2000, 22, 167-183.
- 108. E. Mousset, L. Frunzo, G. Esposito, E. D. van Hullebusch, N. Oturan and M. A. Oturan, Appl Catal B-Environ, 2016, 180, 189-198.
- 109. D. Minakata, K. Li, P. Westerhoff and J. Crittenden, Env. Sci. Tech., 2009, 43, 6220-6227.
- 110. A. Leitzke and C. v. Sonntag, Ozone: Science & Engineering, 2009, 31, 301-308.
- 111. H. Herrmann, T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich and T. Otto, Chem Rev, 2015, 115, 4259-4334.
- 112. B. Ervens, C. George, J. E. Williams, G. V. Buxton, G. A. Salmon, M. Bydder, F. Wilkinson, F. Dentener, P. Mirabel, R. Wolke and H. Herrmann, *J Geophys Res-Atmos*, 2003, 108.
- 113. P. Middleton, W. R. Stockwell and W. P. L. Carter, Atmos Environ a-Gen, 1990, 24, 1107-1133.
- 114. A. McCulloch, M. L. Aucott, T. E. Graedel, G. Kleiman, P. M. Midgley and Y. F. Li, J Geophys Res-Atmos, 1999, 104, 8417-8427.
- 115. Y. Yokouchi, F. Hasebe, M. Fujiwara, H. Takashima, M. Shiotani, N. Nishi, Y. Kanaya, S. Hashimoto, P. Fraser, D. Toom-Sauntry, H. Mukai and Y. Nojiri, *J Geophys Res-Atmos*, 2005, 110.
- 116. D. Stone, L. K. Whalley and D. E. Heard, Chem Soc Rev, 2012, 41, 6348-6404.