Electronic Supplementary Information

Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: A laser-desorption isomer-specific UV and IR study

Thomas Uhlemann^a, Sebastian Seidel^a, Christian W. Müller^{a,b,*}

^a Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, D-44780 Bochum, Germany
^b Universität Siegen, Department Chemie und Biologie, D-57076 Siegen, Germany

Table of contents

Relative energies, RSM values and scaling factors of SMX and SIX con- formers	1
Relative energies, RMS values and interaction energies of the monohy- drated complexes of SMX and SIX	4
Quantum topological key parameters at the bond critical points of the conformers of SMX and SIX	6
Potential energy scans and transition states	9
Molecular graphs of all calculated complexes of SMX and SIX	12
Tentative assignment of the R2PI spectra of SMX and SIX	14
Quantum topological key parameters at the bond critical points of the monohydrated complexes of SMX and SIX	15
IQF results with B3LYP	23
Cartesian coordinates	24

 $[\]label{eq:corresponding} \ensuremath{^*\text{Corresponding author},\ e\text{-}\textit{mail address: christian.w.mueller} \ensuremath{^{\circ}\text{christian.w.mueller}} \ensuremath{^{\circ}\text{christian.w.mueller}}$

Relative energies, RMS values and scaling factors of SMX and SIX conformers

Table S1: Relative energies (kcal/mol) including ZPE correction, RMS values (cm⁻¹) representing the agreement between the scaled calculated harmonic frequencies and the experimental NH stretch frequencies and the scaling factors for the harmonic frequencies of the conformers of the two tautomers of sulfamethoxazole (left) and sulfisoxazole (right). In all cases, the basis set 6-311++G(3df,3pd) was used

SMX	M06-2X	B3LYP	ωB97xD		SIX	M06-2X	B3LYP	ωB97xD
m-a1	0.00	0.00	0.00		i-a1	0.00	0.00	0.00
	11	14	15			7	8	11
	0.9517	0.9581	0.9468			0.9574	0.9578	0.9457
m-a3	3.12	2.85	3.29		i-a2	1.82	2.41	1.57
	19	21	20			4	3	9
	0.9468	0.9532	0.9421			0.9534	0.9601	0.9479
m-i1	10.58	8.37	10.77		i-a4	2.15	not conv.	1.81
	12	3	12			16		22
	0.9541	0.9631	0.9502			0.9510		0.9457
m-i2	10.49	8.91	10.72		i-a5	not conv	not conv	not conv
	11	14	10		i-a6	2.94		
	0.9542	0.9609	0.9504			14	not conv.	not conv.
m-i3	13.18	11.05	13.45			0.9506		
	20	22	20		i-a7		2.60	
	0.9504	0.9583	0.9454			not conv.	21	not conv.
							0.9552	
	-		7		i-i1	14.11	10.76	14.10
			M			4	6	4
						0.9566	0.9646	0.9512
1					i-i2	13.40	11.61	13.85
						3	5	6
	, ,					0.9556	0.9639	0.9505
	N.				i-i3	13.80	11.47	13.99
	ì					7	9	3
						0.9571	0.9651	0.9518
-	77				i-i4	14.22	11.94	14.34
Figure S1	: i-a7 (left) and	d i-a6 (right)			5	5	5
-		. 2	-		0.9574	0.9650	0.9521	

Table S2: Relative energies (kcal/mol) including ZPE correction, RMS values (cm⁻¹) representing the agreement between the scaled calculated harmonic frequencies and the experimental NH stretch frequencies and the scaling factors for the harmonic frequencies of the conformers of the two tautomers of sulfamethoxazole using M05-2X in combination with three different basis sets

SMX	6-31+G(d)	6-311++G(d,p)	6-311++G(3df,3pd)
m-a1	0.00	0.00	0.00
	1	3	9
	0.9440	0.9427	0.9424
m-a2	2.04	2.20	
	5	4	not conv.
	0.9455	0.9440	
m-a3	3.52	3.65	3.38
	21	20	20
	0.9391	0.9382	0.9376
m-i1	10.31	9.64	9.92
	7	2	9
	0.9456	0.9458	0.9450
m-i2	10.59	9.99	9.90
	13	3	9
	0.9450	0.9449	0.9450
m-i3	12.98	12.55	12.60
	22	22	21
	0.9407	0.9398	0.9402
m-i4		12.79	12.93
	not conv.	21	21
		0.9396	0.9400

Table S3: Relative energies (kcal/mol) including ZPE correction, RMS values (cm⁻¹) representing the agreement between the scaled calculated harmonic frequencies and the experimental NH stretch frequencies and the scaling factors for the harmonic frequencies of the conformers of the two tautomers of sulfisoxazole using M05-2X in combination with three different basis sets

SIX	6-31+G(d)	6-311++G(d,p)	6-311++G(3df,3pd)
i-a1	0.00	0.00	0.00
	2	5	5
	0.9434	0.9415	0.9415
i-a2	1.66	1.91	1.98
	10	10	3
	0.9464	0.9447	0.9442
i-a3	2.19	2.59	
	2	4	not conv.
	0.9427	0.9410	
i-a4	2.79	3.15	2.62
	12	11	16
	0.9435	0.9417	0.9417
i-a5	3.40	3.68	4.10
	13	12	6
	0.9461	0.9442	0.9442
i-i1	14.55	14.24	13.63
	1	4	1
	0.9473	0.9459	0.9465
i-i2	14.74	14.35	13.27
	2	2	3
	0.9466	0.9449	0.9456
i-i3	14.62	14.49	13.52
	5	8	2
	0.9479	0.9466	0.9469
i-i4	15.16	14.91	13.93
	2	5	0
	0.9483	0.9469	0.9470

	$\Delta E^a \ { m MP2/6-311++G(d,p)}$	ΔE^a sos-RICC2/TZVPP	ΔE sos-RICC2/TZVPP
	single-point energy	single-point energy	geometry optimization
SMX			
m-a1	0.00	0.00	0.00
m-a2	2.69	2.06	2.11
m-a3	5.08	3.75	3.73
SIX			
i-a1	0.00	0.00	0.00
i-a2	1.59	1.96	1.95
i-a3	3.66	2.98	2.80

Table S4: Relative energies (kcal mol^{-1}) of SMX and SIX conformers calculated at different non-DFT levels of theory. All energies are given without zero-point energy correction. Turbomole¹ was used for the RICC2 calculations

 a Single-point energies on the M05-2X/6-311++G(d,p) equilibrium geometries.

Table S5: Dihedral angles ω , θ , and τ of the SMX conformer **m-a1** and the four SMX crystal polymorphs. The dihedral angles are defined in Fig. 1 of the main text

	ω	θ	au	
SMX m-a1	-86.4	-60.5	134.4	
polymorph $I^{2,a}$	-76.6	-56.1	140.8	
polymorph $\mathrm{H}^{2,b}$	-78.6	-61.6	150.8	
polymorph III ^{3,c}	-70.3	-61.1	152.4	
polymorph $IV^{3,d}$	-72.7	-65.7	161.6	

CSD Refcodes: ^aSLFNMB01, ^bSLFNMB02, ^cSLFNMB05, ^dSLFNMB06.

Relative energies, RMS values and interaction energies of the monohydrated complexes of SMX and SIX

Table S6: BSSE and ZPE-corrected relative energies, RMS values (cm⁻¹) and scaling factors for the harmonic frequencies, sum of intermolecular EML energies, and complexation energies (kcal/mol) of the monohydrated complexes of sulfamethoxazole. The complexation energies are given in parentheses (raw/corrected). mid = 6-311++G(d,p); big = 6-311++G(3df,3pd)). Not conv. = converged to different structure during geometry optimization

		M05-2X		M06-2X		B3LYP		ωB97xD		
		mid	big	big*	mid	big	mid	big	mid	big
	m-a1wa	0.00, 8,	0.00, 10,	0.00, 12,	0.00, 18ª,	0.00, 18ª,	0.00**, 11,	0.00, 13,	0.00, 17,	0.00, 16,
		0.9408, -11.77	0.9418, -11.83	0.9413	0.9447, -12.36	0.9465, -12.23	0.9605, -10.48	0.9616, -10.98	0.9445	0.9463
		(-12.46/-11.39)	(-10.79/-10.29)	(-10.79/-10.31)	(-12.73/-11.70)	(-11.09/-10.54)	(-9.77/-8.72)	(-8.73/-8.27)	(-12.69/-11.60)	(-11.11/-10.57)
	m-a1wb	0.04, 15ª,	0.27, 14ª,	0.27, 15ª,	0.04, 25ª,	0.22, 25ª,	0.67, 15ª,	0.94, 14ª,	0.62, 22ª,	1.09, 18ª,
		0.9376, -12.51	0.9380, -12.61	0.9373,	0.9412, -12.92	0.9427, -12.86	0.9547, -10.99	0.9552, -10.70	0.9400	0.9412
		(-12.52/-11.32)	(-10.63/-10.05)	(-10.57/-10.01)	(-12.69/-11.52)	(-10.87/-10.24)	(-9.34/-8.28)	(-7.87/-7.33)	(-11.76/-10.64)	(-10.10/-9.48)
	m-a1wc	0.82, 20ª,		0.66, 23ª,	0.51, 20ª,		0.47**, 10,		0.68, 16ª,	
		0.9402, -10.25	not calc.	0.9408	0.9437, -10.58	not calc.	0.9595, -10.33	not calc.	0.9437	not calc.
		(-11.45/-10.17)		(-10.11/-9.44)	(-12.10/-10.75)		(-9.09/-8.08)		(-11.68/-10.44)	
	m-a3wa	2.78, 13,		2.93, 23,	2.78, 19ª,		2.47, 9,		3.41, 20,	
		0.9391, -12.55	not calc.	0.9382,	0.9425, -12.74	not calc.	0.9572, -11.60	not calc.	0.9424	not calc.
		(-12.94/-11.83)		(-11.26/-10.72)	(-12.96/-11.81)		(-10.11/-9.05)		(-12.27/-11.17)	
	m-a1wf	3.05, 57ª,		2.86, 58ª,	2.92, 60ª,				3.11, 57ª,	
		0.9335, -4.18	not calc.	0.9326	0.9390, -6.53	not calc.	not conv.	not calc.	0.9351	not calc.
		(-9.97/-8.83)		(-7.91/-7.40)	(–10.96/–9.75)				(-9.05/-7.94)	
	m-a1we				2.74, 63ª,					
		not conv.	not calc.	not calc.	0.9373, -5.68	not calc	not conv.	not calc.	not conv.	not calc.
					(-10.39/-9.14)					
4	m-a1wg	3.65, 63ª,			3.63, 64ª,				3.84, 65ª,	
		0.9341, -6.58	not calc.	not calc.	0.9382, -7.53	not calc.	not conv.	not calc.	0.9367	not calc.
		(-9.48/-8.33)			(-9.95/-8.71)				(-9.51/-8.36)	
	m-a1wh						3.67, 56ª,			
		not conv.	not calc.	not calc.	not conv.	not calc.	0.9430, -5.02	not calc.	not conv.	not calc.
							(-4.43/-3.88)			
	m-a1wd	2.98, 56ª,			2.88, 56ª,	_	4.21, 57ª,		3.20, 57ª,	
		0.9259, -4.65	not calc.	not calc.	0.9303, -4.92	not calc.	0.9420, -2.98	not calc.	0.9274	not calc.
		(-/.99/-6.6/)			(-8.48/-7.10)		(-4.3//-3.31)		(-7.91/-6.64)	
	m-a1wi	5.37, 46ª,		5.65, 52ª,	5.68, 46 ^a ,		4.44, 47ª,		5.93, 49ª,	
		0.9309, -8.06	not calc.	0.9307	0.9352, -9.77	not calc.	0.9481, -7.50	not calc.	0.9328	not calc.
	:2	(-8.96/-7.62)		(-7.55/-6.95)	(-9.35/-7.93)		(-6.42/-5.51)		(-8.93/-7.58)	
	m-I3wa	10.94, 41°,		11.19, 48,	11.56, 31,		9.66, 35°,		11.61, 40,	
		0.9427, -12.37	not calc.	0.9429	0.9462, -12.55	not calc.	0.9623, -11.67	not calc.	0.9466	not calc.
		(-14.15/-12.83)		(-12.20/-11.72)	(-14.30/-12.94)		(-11.66/-10.44)		(-14.31/-12.99)	
	m-I3WD	11.08, 45°,	n at as la	10.86, 50°,	11.42, 40,	a e to e le		a a trada	11.39, 45°,	ant colo
		0.9448, -13.15	not calc.	0.9450	0.9485, -13.40	not calc.	not conv.	not calc.	0.9493	not calc.
		(-14.88/-13.71)		(-13.2//-12./9)	(-15.00/-13.8/)				(-15.10/-13.8/)	
	111-13WC	14.04, /ð°,°,	not calc	13.91, / 1°,°,	14.34, /U°,°,	not colo	not conv	not calc	14.84, 08%, 0.0241	not colo
		0.9290, -9.19	not caic.	0.9303	0.9343, -9.00	not calc.	not conv.	not calc.	0.9341	not calc.
		(-11.10/-9.77)		(-9.67/-9.16)	(-11.51/-10.27)				(-11.31/-10.09)	

* CP at every step of geometry optimization; ** no CH···O or OH···π interaction as compared to the structures optimized with the other DFT functionals. ^a transitions (sym. OH and asym. anilinic NH) or ^b sym. OH and sym. anilinic NH or ^d asym. anilinic NH and sulf./heterocycle-NH in wrong order. RMS actually higher

	M05	5-2X	M0	6-2X	B3	LYP	ωBS	97xD
	mid	big	mid	big	mid	big	mid	big
i-a1wb	0.00, 8,	0.00, 6,	0.35, 18,	0.00, 18,	0.00, 9ª,	0.00, 8ª,	0.29, 19,	0.00, 13,
	0.9413, -12.52	0.9417, -12.61	0.9446, -12.90	0.9460, -12.90	0.9589, -11.17	0.9548, -10.86	0.9442	0.9453
	(-12.32/-11.17)	(-10.49/-9.91)	(-12.56/-11.34)	(-10.73/-10.12)	(-9.48/-8.38)	(-7.99/-7.45)	(-11.76/-10.58)	(-10.03/-9.42)
i-a1wc	0.18, 71 ^{a,d} ,		0.00, 70 ^d ,		1.53, 76ª,		0.00, 70 ^{a,d} ,	
	0.9451, -9.19	not calc.	0.9496, 10.45	not calc.	0.9614, -5.99	not calc.	0.9485	not calc.
	(-13.28/-12.19)		(-13.89/-12.71)		(-10.12/-9.18)		(-13.65/-12.53)	
i-a1wa	1.47, 21,	1.30, 24,	1.52, 32,	1.27, 35,	1.21, 23,	1.08, 22,	1.55, 32,	1.05, 30,
	0.9371, -9.94	0.9375, -9.19	0.9414, -10.70	0.9426, -9.94	0.9541 <i>,</i> -8.60	0.9548, -7.78	0.9394	0.9406
	(-10.20/-9.02)	(-8.58/-8.01)	(-10.54/-9.30)	(-8.91/-8.29)	(-7.69/-6.57)	(-6.42/-5.93)*	(-9.97/-8.78)	(-8.57/-7.95)
i-a1wd	1.91, 64,		1.93, 59,				1.35, 69,	
	0.9401, -7.69	not calc.	0.9446, 8.66	not calc.	not conv.	not calc.	0.9435	not calc.
	(-10.61/-9.49)		(-11.22/-10.04)				(-11.07/-9.93)	
i-a1we					1.29, 68ª,			
	not conv.	not calc.	not conv.	not calc.	0.9540, 6.46	not calc.	not conv.	not calc.
					(-6.64/-6.08)			
i-a1wf	2.07, 27,		1.89, 32,		1.31, 26,		2.04, 30,	
	0.9385, -9.48	not calc.	0.9421, -9.88	not calc.	0.9525, -8.03	not calc.	0.9405	not calc.
	(-10.45/-9.05)		(-11.06/-9.63)		(-7.18/-6.15)		(-10.31/-8.79)	
i-a2wac	2.22, 51,		1.76, 49,		3.61, 49,		1.76, 55,	
	0.9362, -9.45	not calc.	0.9401, -10.35	not calc.	0.9525, -5.78	not calc.	0.9375	not calc.
	(-11.88/-10.56)		(-12.52/-11.14)		(-8.12/-6.91)		(-11.48/-10.19)	
i-a2wb	2.23, 31,		2.25, 38,		2.14, 38,		1.79, 36,	
	0.9444, -11.74	not calc.	0.9478, -11.76	not calc.	0.9634, -11.42	not calc.	0.9465 <i>,</i>	not calc.
	(-11.50/-10.33)		(-11.66/-10.42)		(-9.51/-8.29)		(-11.11/-9.95)	
i-i1wa	10.84, 29ª,		11.57, 26ª,		8.54, 27ª,		11.99, 31ª,	
	0.9459, -13.80	not calc.	0.9497, -14.47	not calc.	0.9625, -11.29	not calc.	0.9478	not calc.
	(-16.85/-15.68)		(-17.08/-15.86)		(-13.47/-12.40)		(-16.09/-14.90)	
i-i1wb	16.03, 61,						16.16, 62,	
	0.9367, -8.34	not calc.	not conv.	not calc.	not conv.	not calc.	0.9386	not calc.
	(-10.36/-9.01)						(-10.24/-8.90)	
i-i2wa	16.38, 58,		16.38, 51,				15.98, 58,	
	0.9365, -5.59	not calc.	0.9414, -5.80	not calc.	not conv.	not calc.	0.9394	not calc.
	(-9.43/-8.06)		(-9.80/-8.42)				(–9.89/–8.53)	
i-i2wb	17.74, 51,		17.91, 43,		14.81, 54ª,		17.45, 53,	
	0.9358, -5.74	not calc.	0.9413, -6.40	not calc.	0.9546, -4.14	not calc.	0.9386,	not calc.
	(-8.05/-6.93)		(-8.29/-7.14)		(-6.37/-5.14)		(–7.96/–6.98)	
i-i2wc	18.87, 68,		18.84, 62,		17.87, 58,		18.19, 63,	
	0.9364, -9.42	not calc.	0.9409, -9.81	not calc.	0.9548, -7.72	not calc.	0.9390	not calc.
	(-12.04/-10.72)		(–12.31/–10.95)		(–8.88/–7.62)		(-11.78/-10.40)	
i-i2wd	19.08, 69,		18.97, 62,		17.93, 59,		18.15, 64,	
	0.9362, -9.35	not calc.	0.9407, -9.79	not calc.	0.9542, -7.65	not calc.	0.9387	not calc.
	(-11.94/-10.62)		(-12.21/-10.84)		(-8.81/-7.55)		(-11.64/-10.25)	
i-i2we	21.49, 52,		20.91, 43,				20.99, 52,	
	0.9346, -3.99	not calc.	0.9407, -4.33	not calc.	not conv.	not calc.	0.9350	not calc.
	(-10.59/-9.21)		(-12.59/-11.02)				(-11.02/-9.56)	

Table S7: BSSE and ZPE-corrected relative energies, RMS values (cm⁻¹) and scaling factors for the harmonic frequencies, sum of intermolecular EML energies, and complexation energies (kcal/mol) of the monohydrated complexes of sulfisoxazole. The complexation energies are given in parentheses (raw/corrected). mid = 6-311++G(d,p); big = 6-311++G(3df,3pd). Not conv. = converged to different structure during geometry optimization

* no CH…O H-bond; ^a transitions (sym. OH and asym. anilinic NH) or ^b sym. OH and sym. anilinic NH or ^d asym. anilinic NH and sulf.-NH in wrong order. RMS actually higher

Quantum topological key parameters at the bond critical points of the conformers of SMX and SIX

Table S8: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfamethoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **B3LYP/6-311++G(3df,3pd)** level of theory for all conformers. All structures were fully optimized at the same level of theory as the wave function used

Interaction	$ ho(r_{\scriptscriptstyle BCP})$	$ abla^2 ho(r_{BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)
m-a1							
SO HC	0.0098	0.0361	-0.0064	0.0077	0.0013	-2.01	2.826
m-a3							
N HC	0.0067	0.0228	-0.0035	0.0046	0.0011	-1.10	3.127
m-i2							
NH OS	0.0241	0.0986	-0.0186	0.0216	0.0030	-5.84	2.114
m-i1							
NH OS	0.0241	0.0952	-0.0183	0.0211	0.0028	-5.74	2.104
m-i3							
CH OS	0.0141	0.0526	-0.0095	0.0113	0.0018	-2.98	2.509

Table S9: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfamethoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **M05-2X/6-311++G(3df,3pd)** level of theory for all conformers but **m-a2**. The wave function for **m-a2** was derived at the **M05-2X/6-311++G(df,pd)** level of theory. All structures were fully optimized at the same level of theory as the wave function used

Interaction	$ ho(r_{\scriptscriptstyle BCP})$	$ abla^2 ho(r_{\scriptscriptstyle BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)
m-a1							
SO HC	0.0112	0.0419	-0.0079	0.0092	0.0013	-2.48	3.026
m-a2							
CH CS	0.0075	0.0216	-0.0040	0.0047	0.0007	-1.26	2.984
m-a3							
N HC ^a	0.0085	0.0296	-0.0048	0.0061	0.0013	-1.51	3.368
m-i2							
NH OS	0.0256	0.1082	-0.0213	0.0242	0.0029	-6.68	2.096
m-i1							
NH OS	0.0258	0.1090	-0.0215	0.0244	0.0029	-6.75	2.084
m-i3							
CH OS	0.0164	0.0634	-0.0119	0.0139	0.0020	-3.73	2.488
m-i4							
CH OS	0.0169	0.0659	-0.0123	0.0144	0.0021	-3.86	2.463

^a the bond path does not go to the H atom but the C-atom. However, we assume a H-bond as seen in the results using B3LYP.

Table S10: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfamethoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **M06-2X/6-311++G(3df,3pd)** level of theory for all conformers. All structures were fully optimized at the same level of theory as the wave function used

optimized at the o									
Interaction	$ ho(r_{\scriptscriptstyle BCP})$	$ abla^2 ho(m{r}_{BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)		
m-a1									
SO HC	0.0113	0.0422	-0.0079	0.0092	0.0013	-2.48	2.889		
m-a3									
N HC ^a	0.0086	0.0301	-0.0049	0.0062	0.0013	-1.54	3.419		
m-i2									
NH OS	0.0245	0.1071	-0.0205	0.0236	0.0031	-6.43	2.106		
m-i1									
NH OS	0.0248	0.1080	-0.0207	0.0238	0.0031	-6.49	2.094		
m-i3									
CH OS	0.0162	0.0649	-0.0118	0.0140	0.0022	-3.07	2.459		

^a the bond path does not go to the H atom but the C-atom. However, we assume a H-bond as seen in the results using B3LYP.

Table S11: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfisoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **B3LYP/6-311++G(3df,3pd)** level of theory for all conformers. All structures were fully optimized at the same level of theory as the wave function used

Interaction	$ ho(r_{\scriptscriptstyle BCP})$	$ abla^2 ho(m{r}_{BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)	
i-a1								
CH OS	0.0064	0.0240	-0.0040	0.0050	0.0010	-1.26	2.9688	
i-a2								
CH CS	0.0042	0.0131	-0.0020	0.0026	0.0006	-0.63	3.1405	
i-a7								
CH ON	0.0047	0.0175	-0.0026	0.0035	0.0009	-0.82	3.3060	
i-i1	no non-co	valent interac	tion presen	t				
i-i2								
CH OS ^a	0.0096	0.0317	-0.0059	0.0069	0.0010	-1.85	2.6343	
CH OS ^b	0.0097	0.0315	-0.0059	0.0069	0.0010	-1.85	2.6036	
i-i3	no non-covalent interaction present							
i-i4	no non-co	valent interac	tion presen	t				
i-i3 i-i4	no non-covalent interaction present no non-covalent interaction present							

^a opposite side of heterocycle N-H atom; ^b same side

Table S12: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfisoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **M05-2X/6-311++G(3df,3pd)** level of theory for all conformers but i-a3. The wave function for i-a3 was derived at the **M05-2X/6-311++G(d,p)** level of theory. All structures were fully optimized at the same level of theory as the wave function used

Interaction	$\rho(r_{BCP})$	$ abla^2 ho(r_{BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)
i-a1							
CH OS	0.0081	0.0316	-0.0056	0.0067	0.0011	-1.76	3.1582
i-a2							
CH CS	0.0068	0.0211	-0.0036	0.0045	0.0009	-1.13	3.0138
CH CH	0.0055	0.0175	-0.0029	0.0036	0.0007	-0.91	3.2055
i-a3							
CH OS	0.0078	0.0276	-0.0051	0.0060	0.0009	-1.60	2.8265
i-a4							
CH CH	0.0050	0.0150	-0.0026	0.0032	0.0006	-0.82	3.3093
i-a5	no non-co	valent interac	ction presen	t			
i-i1	no non-co	valent interac	ction presen	t			
i-i2							
CH OS ^a	0.0119	0.0406	-0.0079	0.0090	0.0011	-2.48	2.5646
CH OS ^b	0.0119	0.0395	-0.0077	0.0088	0.0011	-2.42	2.5147
i-i3	no non-co	valent interac	ction presen	t			
i-i4	no non-co	valent interac	ction presen	t			

^a opposite side of heterocycle N-H atom; ^b same side

Table S13: Summary of the QTAIM results regarding the non-covalent interactions in the conformers of the amido and imido tautomers of **sulfisoxazole**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived at the **M06-2X/6-311++G(3df,3pd)** level of theory for all conformers. All structures were fully optimized at the same level of theory as the wave function used

Interaction	$ ho(r_{\scriptscriptstyle BCP})$	$ abla^2 ho(m{r}_{BCP})$	$V(r_{BCP})$	$G(r_{BCP})$	$H(r_{BCP})$	$E_{\rm HB}$	BPL (Å)
i-a1							
CH OS ^a	0.0086	0.0335	-0.0060	0.0072	0.0012	-1.88	3.3749
i-a2							
CH CS	0.0066	0.0209	-0.0035	0.0043	0.0008	-1.10	3.3783
CH CH	0.0066	0.0199	-0.0034	0.0042	0.0008	-1.07	3.1133
i-a4							
CH CH	0.0060	0.0176	-0.0031	0.0038	0.0007	-0.97	3.0676
CH CS ^a	0.0059	0.0194	-0.0032	0.0040	0.0008	-1.00	3.7777
i-a6							
CH CS	0.0079	0.0238	-0.0041	0.0050	0.0009	-1.29	2.9890
CH OS	0.0066	0.0230	-0.0043	0.0050	0.0007	-1.35	2.9928
i-i1	no non-co	valent interac	tion presen	t			
i-i2							
CH OS ^b	0.0118	0.0411	-0.0079	0.0091	0.0012	-2.48	2.5624
CH OS ^c	0.0119	0.0401	-0.0078	0.0089	0.0011	-2.45	2.4988
i-i3	no non-co	valent interac	tion presen	t			
i-i4	no non-co	valent interac	tion presen	t			

^a bond path actually goes to the C atom. However, we assume that it is a tracing error (cf. B3LYP results). ^b opposite side of heterocycle N-H atom; ^c same side

Potential energy scans and transition states

Figure S2: Inversion potential (M05-2X/6-311++G(3df,3pd)) for the anilinic group in SMX (top) and SIX (bottom). The inversion coordinate is given as the distance along the line that intersects both the CN bond direction at right angle and the midpoint between the two hydrogen atoms. A negative value for the inversion coordinate translates to the hydrogen atoms being on the same side of the phenyl plane as the oxygen atoms of the sulfonamide group. The reduced masses used were 1.234 amu and 1.223 amu, respectively. The vibrational eigenvalues and eigenfunctions of the potential energy curves were determined numerically using the Numerov method^{4,5}.

Figure S3: Relaxed potential energy scan connecting the conformers m-a3 and m-a1 of sulfamethoxazole. The N-C-N-S dihedral angle was scanned. The structures of the minima and transition states are given. M05-2X/6-311++G(3df,3pd) was used for all calculations.

Figure S4: Relaxed potential energy scan connecting the conformers i-a2 and i-a1 of sulfisoxazole. The C-N-S-C dihedral angle was scanned. The structures of the minima and transition states are given. M05-2X/6-311++G(3df,3pd) was used for all calculations.

Figure S5: Relaxed potential energy scan connecting the conformers i-a4 and i-a1 of sulfisoxazole. The C-C-N-S dihedral angle was scanned. The structures of the minima and transition states are given. M05-2X/6-311++G(3df,3pd) was used for all calculations.

Molecular graphs of all calculated monohydrated complexes of SMX and SIX

Figure S6: The molecular graphs of all SMX isomers. All geometries were optimized using M05-2X/6-311++G(d,p) unless for the last two isomers that were only stable using M06-2X or B3LYP, respectively.

Figure S7: The molecular graphs of all SIX isomers. All geometries were optimized using M05-2X/6-311++G(d,p) unless for the last isomer that was only stable using B3LYP.

Tentative assignment of the R2PI spectra of SMX and SIX

The most prominent vibronic progressions in the RIDIR spectra of the SMX and SIX monomers are based on an S_1 excited state vibration with a frequency of $+72 \,\mathrm{cm}^{-1}$ and $+69 \,\mathrm{cm}^{-1}$, respectively. Using harmonic S₁ state frequencies calculated at the TD-B3LYP/6-31+G(d) and CIS/6-31+G(d) level of theory, we tentatively assign the asymmetric butterfly motion with a calculated unscaled frequency of $80 \,\mathrm{cm}^{-1}$ (CIS: $66 \,\mathrm{cm}^{-1}$) in SMX and $63 \,\mathrm{cm}^{-1}$ (CIS: $75 \,\mathrm{cm}^{-1}$) in SIX as the origin of these progressions. Additionally, we observed a very prominent vibronic progression built upon a mode with a frequency of $+34 \,\mathrm{cm}^{-1}$ in the R2PI spectrum of SIX. Based on our S₁ state harmonic frequency calculations at the CIS/6-31+G(d) and TD-B3LYP/6-31+G(d) levels of theory, we tentatively suggest that this transition is either due to a normal mode consisting of γ (NH2) and τ (N-heterocycle) (CIS: 32 cm⁻¹) or a normal mode consisting of τ (N-heterocycle) and τ (S-phenyl) (TD-B3LYP: 35 cm⁻¹). A similar transition is present in the R2PI spectrum of SIX at $+31 \,\mathrm{cm}^{-1}$ but with much lower relative intensity. Therefore, only in the R2PI spectrum of SIX a hot band originating from the corresponding vibrationally excited ground state is present $-33 \,\mathrm{cm}^{-1}$ red-shifted with respect to the electronic origin. Assuming a Boltzmann distribution and using the integrated intensities of the transitions at $+34 \,\mathrm{cm}^{-1}$ and $-33 \,\mathrm{cm}^{-1}$ the vibrational temperature of SIX under our experimental conditions is estimated to be 21 K. The very same pattern $(+34 \text{ cm}^{-1} \text{ and } +69 \text{ cm}^{-1} \text{ as well}$ as $+31 \,\mathrm{cm}^{-1}$ and $+72 \,\mathrm{cm}^{-1}$) as around the electronic origin can be observed $+815 \,\mathrm{cm}^{-1}$ (for SIX) and $+816 \text{ cm}^{-1}$ (for SMX) blue-shifted as combination bands, building the same vibronic progression upon a vibration tentatively assigned to a mode similar to mode 1, sometimes denoted as mode 12, of aniline. This aniline normal mode mainly consists of three in-phase stretching contributions, namely $\nu(C_1-N)$, $\nu(C_1-C_2)$ and $\nu(C_1-C_6)$. The assignment was based on harmonic frequency calculations and comparison to published and assigned vibronic spectra of aniline's S_1 (¹ B_2) excited state.^{6,7} Depending on the theoretical method and the molecule the mode has some contribution from $\nu(NO)$, $\gamma(CH)$ or inversion at the sulfonamide nitrogen atom. The unscaled harmonic frequencies are for SMX 842 cm^{-1} (CIS and TD-B3LYP), and for SIX 849 cm^{-1} (CIS) and 835 cm^{-1} (TD-B3LYP).

Quantum topological key parameters at the bond critical points of the monohydrated complexes of SMX and SIX

Table S14: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfamethoxazole–H**₂**O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **M05-2X/6-311++G(d,p)** level of theory

Interaction	$ ho(r_{ m BCP})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$\textit{G}(\textit{r}_{\text{BCP}})$	$H(r_{ m BCP})$	E_{HB}	$\sum_{i} E_{\rm HB}^{\rm inter,i}$	BPL (Å)
m-a1wa								
CH OS	0.0107	0.0380	-0.0071	0.0083	0.0012	-2.23		2.7663
NH O(w)	0.0221	0.0848	-0.0166	0.0189	0.0023	-5.21		2.0362
CH _{pheny} O(w)	0.0073	0.0247	-0.0045	0.0053	0.0008	-1.41	-11.77	2.6400
OH(w) NO	0.0228	0.0824	-0.0164	0.0185	0.0021	-5.15		2.0729
m-a1wb								
CH OS	0.0106	0.0379	-0.0071	0.0083	0.0012	-2.23		2.7712
NH O(w)	0.2100	0.0815	-0.0155	0.0179	0.0024	-4.86		2.0490
CH _{pheny} O(w)	0.0086	0.0291	-0.0052	0.0063	0.0011	-1.63	-12.51	2.4873
OH(w) OS	0.0234	0.0952	-0.0192	0.0215	0.0023	-6.02		2.0135
m-a1wc								
CH OS ^b	0.0118	0.0444	-0.0082	0.0097	0.0015	-2.57		3.1670
NH […] O(w)	0.0199	0.0712	-0.0141	0.0160	0.0019	-4.42		2.1248
OH(w) CH _{phenyl}	0.0071	0.0226	-0.0038	0.0047	0.0009	-1.19	-10.25	2.9380
OH(w) NO	0.0211	0.0761	-0.0148	0.0169	0.0021	-4.64		2.1186
m-a3wa								
NH O(w)	0.0229	0.0907	-0.0174	0.0201	0.0027	-5.46		1.9957
OH(w) […] OS	0.0265	0.1070	-0.0226	0.0247	0.0021	-7.09	-12.55	1.9432
m-a1wf								
OH(w)-NO	0.0145	0.0516	-0.0085	0.0107	0.0022	-2.67		2.2504
O(w) CH _{nhenvl} ^c	0.0077	0.0289	-0.0048	0.0060	0.0012	-1.51	-4.18	3,4614
m-a1wa								
methylCH O(w)	0.0062	0.0212	-0.0039	0.0046	0.0007	-1.22		2,6930
	0.0128	0.0492	-0.0089	0.0106	0.0017	-2 79	-6 58	2 2666
	0.0141	0.0466	-0.0082	0.0099	0.0017	-2 57	0.00	2 3155
m-a1wd	0.0111	0.0100	0.0002	0.0000	0.0017	2.57		2.0100
	0 0104	0 0373	-0.0069	0.0081	0.0012	-2 16		2 9082
	0.0135	0.0489	-0.0100	0.0111	0.0012	_3 1/		2.3002
	0.0103	0.0405	-0.0048	0.00111	0.0011	_1 51	-4.65	2.5450
m-a1wi	0.0105	0.0315	0.0040	0.0004	0.0010	1.51		2.3020
	0 0122	0.0437	-0.0084	0 0096	0.0012	-2.64		2 6400
	0.0122	0.0457	-0.0084	0.0090	0.0012	-2.04		2.0409
	0.0114	0.0302	-0.0000	0.0078	0.0012	-2.07 E 40	8 0C	2.3000
	0.0218	0.0874	-0.0173	0.0190	0.0023	-0.56	-8.00	2.0202
	0.0054	0.0121	-0.0018	0.0024	0.0008	-0.50		5.9494
	0.0142	0.0539	0.0100	0.0116	0.0016	2 1 4		2 5769
	0.0143	0.0528	-0.0100	0.0116	0.0016	-3.14		2.5708
	0.0238	0.0970	-0.0186	0.0214	0.0028	-5.84	-12.37	1.9933
OH(W) ^m NS	0.0272	0.0915	-0.0208	0.0218	0.0010	-0.53		1.9968
m-I3Wb	0.0460	0.0000	0.0440	0.0400	0.0040			
	0.0160	0.0603	-0.0113	0.0132	0.0019	-3.55		2.4501
NH […] O(w)	0.0246	0.0992	-0.0193	0.0221	0.0028	-6.06	-13.15	1.98/3
OH(w) NS	0.0291	0.0947	-0.0226	0.0231	0.0005	-7.09		1.9708
m-i3wc								
CH-OS	0.0176	0.0687	-0.0127	0.0149	0.0022	-3.98		2.3777
CH _{phenyl} O(w)	0.0101	0.0300	-0.0058	0.0066	0.0008	-1.82	_	2.4699
OH(w) OS	0.0142	0.0508	-0.0105	0.0116	0.0011	-3.29	-9.19	2.3500
OH(w) NS	0.0193	0.0666	-0.0130	0.0148	0.0018	-4.08		2.1680

^b bond path goes actually to the C atom; ^c bond path $O \leftrightarrow C$

Table S15: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfisoxazole–H**₂**O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **M05-2X/6-311++G(d,p)** level of theory

Interaction	$ ho(r_{ m BCP})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$G(r_{ m BCP})$	$H(r_{\rm BCP})$	E_{HB}	$\sum E_{\rm HB}^{ m inter,i}$	BPL (Å)
i-a1wb							i	
mothylCH OS	0 0083	0.0316	-0.0056	0 0068	0 0012	-1 76		3 0489
NH-O(w)	0.0214	0.0834	-0.0159	0.0184	0.0025	-4 99		2 0371
$CH_{nhonyl} O(W)$	0.0070	0.0234	-0.00133	0.0104	0.00023	-1 35	-12 52	2.6039
	0.0070	0.0234	-0.0197	0.0001	0.0023	-6.18	12.52	2.0000
i-a1wc	0.0255	0.0575	0.0157	0.0220	0.0025	0.10		2.0005
mothylCH OS ^b	0 0074	0 0292	-0.0051	0.0062	0 0011	-1 60		3 3817
	0.0074	0.0252	-0.0031	0.0002	0.0011	-1 29		3 4196
$NH_{apilipie} O(W)$	0.0003	0.0250	-0.0041	0.0032	0.0011	-3.26	_9 19	2 2469
	0.0133	0.0332	-0.0104	0.0121	0.0017	-1.61	5.15	2.2405
	0.0221	0.0775	-0.0140	0.0171	0.0025	-4.04		2.0598
r-u⊥wu CH…OS ^b	0.008/	0.0327	-0.0058	0 0070	0 0012	_1 82		3 /081
	0.0084	0.0327	-0.0038	0.0070	0.0012	-1.02		2 0228
	0.0213	0.0801	-0.0100	0.0191	0.0025	1.00	0.04	2.0520
		0.0201	-0.0052	0.0041	0.0009	-1.00	-9.94	3.1100
$U\Pi(W) UN$	0.0158	0.0650	-0.0119	0.0141	0.0022	-3.73		2.2051
	0.0072	0.0271	0.0047	0.0059	0 0011	1 47		2 1550
methylCT US	0.0072	0.0271	-0.0047	0.0058	0.0011	-1.47		3.1009
CH _{phenyl} O(W) [~]	0.0062	0.0211	-0.0036	0.0044	0.0008	-1.13	7.00	3.3050
	0.0137	0.0450	-0.0084	0.0098	0.0014	-2.64	-7.69	2.3506
OH(w) NO	0.0196	0.0708	-0.0125	0.0151	0.0026	-3.92		2.1131
I-alwf		0.0040						
methylCH OS ⁵	0.0081	0.0340	-0.0058	0.0072	0.0014	-1.82		3.0809
NH […] O(w)	0.0195	0.0694	-0.0137	0.0155	0.0018	-4.30		2.1387
OH(w) […] CH _{phenyl}	0.0081	0.0254	-0.0044	0.0054	0.0010	-1.38	-9.48	2.8050
OH(w) […] ON	0.0161	0.0684	-0.0121	0.0141	0.0020	-3.80		2.1998
i-a2wa								
methylCHCS	0.0059	0.0188	-0.0032	0.0040	0.0008	-1.00		3.3799
methylCH […] CH _{phenyl}	0.0059	0.0168	-0.0029	0.0035	0.0006	-0.91		3.3833
CH _{phenyl} O(w)	0.0118	0.0403	-0.0070	0.0085	0.0015	-2.20		2.3427
OH(w) OS	0.0201	0.0846	-0.0158	0.0185	0.0027	-4.96	-9.45	2.0355
OH(w) NO	0.0118	0.0398	-0.0073	0.0086	0.0013	-2.29		2.4214
i-a2wb								
methylCHCS	0.0064	0.0194	-0.0033	0.0041	0.0008	-1.04		3.1684
methylCH CH _{phenyl}	0.0056	0.0165	-0.0028	0.0035	0.0007	-0.88		3.1221
NH O(w)	0.0255	0.0968	-0.0200	0.0221	0.0021	-6.28	-11 74	1.9617
OH(w) OS	0.0217	0.0852	-0.0174	0.0194	0.0020	-5.46	11.74	2.0598
i-i1wa								
NH O(w)	0.0191	0.0756	-0.0141	0.0165	0.0024	-4.42		2.1286
OH(w) OS	0.0229	0.0950	-0.0183	0.0210	0.0027	-5.74	-13.80	1.9562
OH(w) ON ^c	0.0139	0.0626	-0.0116	0.0136	0.0020	-3.64		2.7284
i-i1wb								
CH _{phenyl} O(w)	0.0060	0.0189	-0.0035	0.0041	0.0006	-1.10		2.7738
OH(w) OS	0.0179	0.0658	-0.0134	0.0149	0.0015	-4.20	-8.34	2.1571
OH(w) NS	0.0151	0.0479	-0.0097	0.0108	0.0011	-3.04		2.3503
i-i2wa								
methylCHOSd	0.0118	0.0388	-0.0076	0.0087	0.0011	-2.38		2.5060
methylCHOS ^e	0.0120	0.0397	-0.0078	0.0089	0.0011	-2.45		2.5103
OH(w) CS ^f	0.0070	0.0228	-0.0041	0.0049	0.0008	-1.29	- 5 50	3.5700
OH(w) NS	0.0205	0.0724	-0.0137	0.0159	0.0022	-4.30	-5.59	2.1095
i-i2wb								
methylCH OS ^d	0.0121	0.0400	-0.0079	0.0089	0.0010	-2.48		2.4917
methylCH OS ^e	0.0120	0.0396	-0.0078	0.0089	0.0011	-2.45		2.5093
CH _{phenyl} O(w)	0.0057	0.0227	-0.0034	0.0046	0.0012	-1.07	F 74	3.1715
OH(w) NS	0.0217	0.0757	-0.0149	0.0169	0.0020	-4.67	-5.74	2.0891

Table S15 (*continued*): Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfisoxazole–H₂O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **M05-2X/6-311++G(d,p)** level of theory

i-i2wc								
methylCH OS	0.0150	0.0560	-0.0106	0.0123	0.0017	-3.33		2.4718
methylCH […] CH _{phenyl}	0.0077	0.0222	-0.0037	0.0047	0.0010	-1.16		2.8466
CH _{phenyl} O(w)	0.0109	0.0327	-0.0063	0.0072	0.0009	-1.98		2.4308
OH(w) OS	0.0148	0.0528	-0.0109	0.0121	0.0012	-3.42	-9.42	2.3085
OH(w) NS	0.0187	0.0644	-0.0128	0.0144	0.0016	-4.02		2.1982
i-i2wd								
methylCH OS	0.0151	0.0556	-0.0105	0.0122	0.0017	-3.29		2.4458
$methylCH^{}CH_{phenyl}$	0.0079	0.0227	-0.0038	0.0047	0.0009	-1.19		2.8670
CH _{phenyl} O(w)	0.0108	0.0321	-0.0062	0.0071	0.0009	-1.95		2.4399
OH(w) OS	0.0150	0.0539	-0.0111	0.0123	0.0012	-3.48	-9.35	2.2908
OH(w) NS	0.0184	0.0634	-0.0125	0.0142	0.0017	-3.92		2.2080
i-i2we								
methylCH OS ^b	0.0154	0.0662	-0.0121	0.0143	0.0022	-3.80		2.9283
OH(w) CH _{phenyl}	0.0078	0.0238	-0.0040	0.0050	0.0010	-1.26	_2 00	2.7506
OH(w) ON ^c	0.0113	0.0453	-0.0087	0.0100	0.0013	-2.73	-3.99	2.9888
be the set of the set		1 11	ماہ ، جب	1		1	6	£ 1

^b bond path goes to the C atom; ^c bond path connects O atoms; ^{d, e} same/opposite side as heterocycle H atom from NH group, resp.; ^f bond path goes to the O atom

Table S16: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfamethoxazole–H₂O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **B3LYP/6-311++G(d,p)** level of theory

Interaction	$ ho(r_{ m BCP})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$G(r_{ m BCP})$	$H(r_{ m BCP})$	$E_{\rm HB}$	$\sum_{i} E_{\rm HB}^{\rm inter,i}$	BPL (Å)
m-a1wa								
CH OS	0.0104	0.0375	-0.0067	0.0081	0.0014	-2.10		2.6876
NH O(w)	0.0237	0.0838	-0.0170	0.0190	0.0020	-5.33	10.49	2.0097
OH(w) NO	0.0239	0.0806	-0.0164	0.0183	0.0019	-5.15	-10.48	2.0588
m-a1wb								
CH OS	0.0094	0.0334	-0.0060	0.0072	0.0012	-1.88		2.7701
NH O(w)	0.0206	0.0739	-0.0142	0.0163	0.0021	-4.46		2.0684
CH _{pheny} O(w)	0.0060	0.0203	-0.0036	0.0043	0.0007	-1.13	-10.99	2.6529
OH(w) OS	0.0225	0.0865	-0.0172	0.0194	0.0022	-5.40		2.0275
m-a1wc								0
CH OS	0.0109	0.0395	-0.0071	0.0085	0.0014	-2.23		2.6771
NH O(w)	0.0222	0.0804	-0.0158	0.0179	0.0021	-4.96	10.22	2.0299
OH(w) NO	0.0245	0.0830	-0.0171	0.0189	0.0018	-5.37	-10.33	2.0450
m-a3wa								
phenylCH ON	0.0066	0.0225	-0.0034	0.0045	0.0011	-1.07		3.1485
NH O(w)	0.0245	0.0887	-0.0178	0.0200	0.0022	-5.58	11 00	1.9788
OH(w) OS	0.0246	0.0924	-0.0192	0.0212	0.0020	-6.02	-11.60	1.9850
m-a1wh								
CH OS	0.0095	0.0346	-0.0061	0.0074	0.0013	-1.91		2.8044
_{methyl} CH O(w)	0.0058	0.0208	-0.0036	0.0044	0.0008	-1.13	F 02	2.6909
OH(w) ON	0.0178	0.0705	-0.0124	0.0150	0.0026	-3.89	-5.02	2.0903
m-a1wd								
CH OS	0.0090	0.0333	-0.0058	0.0071	0.0013	-1.82		3.0113
OH(w) ON	0.0110	0.0381	-0.0072	0.0084	0.0012	-2.26	2.00	2.3630
OH(w) CH _{phenyl}	0.0055	0.0147	-0.0023	0.0030	0.0007	-0.72	-2.98	2.8704
m-a1wi								
CH OS	0.0095	0.0335	-0.0061	0.0072	0.0011	-1.91		2.7257
CH _{phenyl} O(W)	0.0116	0.0397	-0.0068	0.0084	0.0016	-2.13	7 50	2.3444
OH(w) OS	0.0226	0.0896	-0.0171	0.0198	0.0027	-5.37	-7.50	1.9791
m-i3wa								
CH OS	0.0132	0.0476	-0.0087	0.0103	0.0016	-2.73		2.5395
NH O(w)	0.0247	0.0918	-0.0182	0.0206	0.0024	-5.71	11 67	1.9926
OH(w) NS	0.0269	0.0837	-0.0190	0.0199	0.0009	-5.96	-11.07	2.0115

Table S17: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfamethoxazole–H**₂**O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **M06-2X/6-311++G(d,p)** level of theory

<i>m-a1wa</i> $CH^{-:}OS$ 0.0107 0.0379 -0.0071 0.0083 0.0012 -2.23 2.7557 $NH^{-:}O(w)$ 0.0227 0.0889 -0.0175 0.0198 0.0023 -5.49 2.0212 $CH_{pheny}^{-:}O(w)$ 0.0083 0.0280 -0.0051 0.0060 0.0009 -160 -12.36 2.5840 $OH(w)^{-:}NO$ 0.0229 0.0845 -0.0168 0.0189 0.0021 -5.27 2.0669 <i>m-a1wb</i> </th <th>7 2 2 9 9 3 3 3 5 5</th>	7 2 2 9 9 3 3 3 5 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2 2 3 3 3 3 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 0 9 3 3 3 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D 9 3 3 3 5
OH(w)~NO 0.0229 0.0845 -0.0168 0.0189 0.0021 -5.27 2.0669 m-a1wb CH~OS 0.0108 0.0386 -0.0072 0.0084 0.0012 -2.26 2.7409 NH~O(w) 0.0215 0.0848 -0.0162 0.0184 0.0022 -5.08 2.0363 CH _{pheny} ~O(w) 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 OH(w)~OS 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 m-a1wc CH~OS ^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	9 9 3 3 5 5
m-a1wb CH OS 0.0108 0.0386 -0.0072 0.0084 0.0012 -2.26 2.7409 NH O(w) 0.0215 0.0848 -0.0162 0.0184 0.0022 -5.08 2.0363 CH _{pheny} O(w) 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 OH(w) OS 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 m-a1wc CH OS ^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	9 3 3 3 5
CH···OS 0.0108 0.0386 -0.0072 0.0084 0.0012 -2.26 2.7409 NH···O(w) 0.0215 0.0848 -0.0162 0.0184 0.0022 -5.08 2.0363 CH _{pheny} ···O(w) 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 OH(w)···OS 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 <i>m-a1wc</i> CH···OS ^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	9 3 8 3 5
CH OS 0.0100 0.0300 0.00072 0.0004 0.0012 2.20 2.1405 NH O(w) 0.0215 0.0848 -0.0162 0.0184 0.0022 -5.08 2.0363 CH _{pheny} O(w) 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 OH(w) OS 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 <i>m-a1wc</i> CH OS ^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	3 8 3 5
NH O(w) 0.0213 0.0848 -0.0102 0.0134 0.0022 -3.08 2.0303 CH _{pheny} O(w) 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 OH(w) OS 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 <i>m-a1wc</i> CH OS ^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	5 3 5
$CH_{pheny}^{m}O(w)$ 0.0095 0.0328 -0.0059 0.0070 0.0011 -1.85 -12.92 2.4418 $OH(w)^{m}OS$ 0.0230 0.0957 -0.0191 0.0215 0.0024 -5.99 2.0193 $m-a1wc$ CH_{m}OS^b 0.0117 0.0444 -0.0082 0.0097 0.0015 -2.57 3.1686	5
$OH(W)^{m}OS = 0.0230 = 0.0957 = 0.0191 = 0.0215 = 0.0024 = 5.99 = 2.0193 = m-a1wc$ $CH^{m}OS^{b} = 0.0117 = 0.0444 = -0.0082 = 0.0097 = 0.0015 = -2.57 = -2.1686$	5
<i>m-a1wc</i> CH OS ^b 0.0117 0.0444 –0.0082 0.0097 0.0015 –2.57 3.1686	5
$(H^{**})N^{*}$ $()()))/(1)/(1)/(1)/(1)/(1)/(1)/(1)/(1)/($	5
NH O(w) 0.0199 0.0/23 -0.0143 0.0162 0.0019 -4.49 2.1262	2
OH(w) CH _{phenyl} 0.0078 0.0251 -0.0043 0.0053 0.0010 -1.35 -10.58 2.9034	1
OH(w) NO 0.0211 0.0778 -0.0151 0.0173 0.0022 -4.74 2.1148	3
m-a3wa	
phenylCH ON ^b 0.0085 0.0292 -0.0047 0.0060 0.0013 -1.47 3.1833	3
NH O(w) 0.0235 0.0947 -0.0184 0.0210 0.0026 -5.77 1.9812	2
OH(w) OS 0.0259 0.1072 -0.0222 0.0245 0.0023 -6.97 ^{-12.74} 1.9495	5
m-a1wf	
anilinicNH O(w) ^c 0.0084 0.0305 -0.0058 0.0067 0.0009 -1.82 3.2331	1
OH(w) [™] NO 0.0154 0.0554 −0.0093 0.0116 0.0023 −2.92 −6.53 2.2249	- -
$O(w)^{m}$ CH _{aband} ^b 0.0089 0.0349 -0.0057 0.0072 0.0015 -1.79 3.2408	é R
$m_n n l w_p$,
	a
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	י ר
O(w) = O(w) = O(0000 + 0.000	<u>^</u>
O(W) ^m CH _{phenyl} ^a 0.0090 0.0338 -0.0056 0.0070 0.0014 -1.76 3.1504	ŧ
	_
methylCH O(w) 0.0078 0.0273 -0.0049 0.0059 0.0010 -1.54 2.5730)
OH(w) ON 0.0144 0.0564 -0.0104 0.0122 0.0018 -3.26 -7.53 2.2225	5
OH(w) NH₂ 0.0144 0.0488 −0.0087 0.0104 0.0017 −2.73 2.3032	2
m-a1wd	
CH OS 0.0106 0.0380 -0.0071 0.0083 0.0012 -2.23 2.8150	C
OH(w) ON 0.0139 0.0510 -0.0105 0.0116 0.0011 -3.29 2.3749	Э
OH(w) CH _{phenyl} 0.0105 0.0336 -0.0052 0.0068 0.0016 -1.63 2.5226	5
m-a1wi	
CH OS 0.0125 0.0448 -0.0086 0.0099 0.0013 -2.70 2.6284	4
CH _{phenyl} O(W) 0.0119 0.0383 -0.0071 0.0083 0.0012 -2.23 2.3693	3
OH(w) OS 0.0217 0.0873 -0.0173 0.0196 0.0023 -5.43 2.0264	4
OH(w) CH 0.0049 0.0165 -0.0026 0.0034 0.0008 -0.82 -9.77 3.1100	C
$OH(w)$ \cdots NS^d 0.0064 0.0209 -0.0041 0.0047 0.0006 -1.29 3.3643	, A
m_i?wa	,
	2
CH OS 0.0148 0.0008 -0.0104 0.0122 0.0018 -5.20 2.0008 0.000000	נ ס
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	с С
OH(W) ^m NS 0.0267 0.0925 -0.0205 0.0218 0.0013 -6.43 2.0016	2
m-13wb	_
CH OS 0.0155 0.0588 -0.0109 0.0128 0.0019 -3.42 2.4615	5
NH O(w) 0.0253 0.1033 -0.0203 0.0230 0.0027 -6.37 -13 40 1.9710	נ
OH(w) NS 0.0286 0.0959 -0.0224 0.0232 0.0008 -7.03 1.9742	2
т-іЗwc	
CH OS 0.0167 0.0655 -0.0120 0.0142 0.0022 -3.77 2.3982	2
CH _{phenyl} O(w) 0.0107 0.0326 -0.0063 0.0072 0.0009 -1.98 2.4392	2
OH(w) OS 0.0140 0.0505 -0.0105 0.0116 0.0009 -3.29 -9.66 2.3863	~
OH(w) NS 0.0201 0.0717 -0.0140 0.0159 0.0019 -4.39 2.1380	3

 $^{\rm b}$ bond path goes to the C atom; $^{\rm c}$ bond path goes to the N atom; $^{\rm d}$ bond path connects O and N

Table S18: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of **sulfisoxazole–H**₂**O**. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the **B3LYP/6-311++G(d,p)** level of theory

$\frac{\rho(r_{\rm BCP}) v^{-}\rho(r_{\rm BCP}) v(r_{\rm BCP}) G(r_{\rm BCP}) H(r_{\rm BCP}) E_{\rm HB} \sum_{i} \frac{L_{\rm HB}}{i}$	BPL (Å)
i-a1wb	
methylCH OS 0.0066 0.0235 -0.0041 0.0050 0.0009 -1.29	2.8681
NH O(w) 0.0215 0.0774 -0.0150 0.0172 0.0022 -4.71	2.0461
CH _{phenyl} O(w) 0.0047 0.0162 -0.0028 0.0034 0.0006 -0.88 -11.17	2.7827
OH(w) OS 0.0231 0.0885 -0.0178 0.0199 0.0021 -5.58	2.0128
i-a1we	
methylCH OS 0.0065 0.0238 -0.0041 0.0050 0.0009 -1.29	2.9271
methylCH O(w) 0.0047 0.0171 -0.0028 0.0035 0.0007 -0.88	2.8737
OH(w) NO 0.0260 0.0851 -0.0178 0.0196 0.0018 -5.58 -0.40	2.0037
i-a1wc	
methylCH OS 0.0051 0.0191 -0.0031 0.0039 0.0008 -0.97	3.0938
anilinicNHO(w) 0.0106 0.0350 -0.0066 0.0077 0.0011 -2.07	2.4435
OH(w) NO 0.0208 0.0676 -0.0125 0.0147 0.0022 -3.92	2.0993
i-a1wa	
methylCH OS 0.0075 0.0270 -0.0047 0.0057 0.0010 -1.47	2.8294
NH O(w) 0.0227 0.0828 -0.0164 0.0185 0.0021 -5.15	2.0204
CH _{phenyl} O(w) 0.0019 0.0076 -0.0009 0.0014 0.0005 -0.28 -8.60	3.7423
OH(w) ON 0.0143 0.0551 -0.0101 0.0119 0.0018 -3.17	2.2606
i-a1wf	
methylCH OS 0.0069 0.0255 -0.0044 0.0054 0.0010 -1.38	2.9321
NH O(w) 0.0219 0.0832 -0.0159 0.0184 0.0025 -4.99	2.0221
OH(w) ON 0.0138 0.0541 –0.0097 0.0116 0.0019 –3.04 ^{–8.03}	2.2820
i-a2wa	
CH _{phenyl} O(w) 0.0091 0.0288 -0.0051 0.0062 0.0011 -1.60	2.4779
OH(w) OS 0.0196 0.0785 -0.0144 0.0170 0.0026 -4.52	2.0437
OH(w) NO 0.0072 0.0228 -0.0040 0.0049 0.0009 -1.26	2.6573
i-a2wb	
methylCH CS 0.0042 0.0120 -0.0020 0.0025 0.0005 -0.63	3.1543
NH O(w) 0.0266 0.0918 -0.0197 0.0213 0.0016 -6.18	1.9536
OH(w) OS 0.0219 0.0824 -0.0167 0.0186 0.0019 -5.24 ^{-11.42}	2.0484
i-i1wa	
NH O(w) 0.0170 0.0624 -0.0115 0.0136 0.0021 -3.61	2.1808
OH(w) OS 0.0206 0.0796 -0.0147 0.0173 0.0026 -4.61 -11.29	2.0110
OH(w) ON ^c 0.0122 0.0536 -0.0098 0.0116 0.0018 -3.07	2.7872
i-i2wb	
methylCH OS ^d 0.0101 0.0318 -0.0062 0.0071 0.0009 -1.95	2.5659
methylCH OS ^e 0.0101 0.0325 -0.0062 0.0072 0.0010 -1.95	2.5911
OH(w) NS 0.0211 0.0684 -0.0132 0.0151 0.0019 -4.14 -4.14	2.1050
i-i2wc	
methylCH HCmethyl 0.0090 0.0343 -0.0051 0.0068 0.0017 -1.60	2.5138
methylCH OS 0.0140 0.0511 -0.0093 0.0110 0.0017 -2.92	2.4492
methylCH CH _{phenyl} 0.0047 0.0138 -0.0022 0.0028 0.0006 -0.69	2.9948
CH _{nhenv} , O(w) 0.0092 0.0254 -0.0050 0.0057 0.0007 -1.57	2.5251
OH(w) OS 0.0098 0.0334 -0.0067 0.0075 0.0008 -2.10 -7.72	2.5870
OH(w) NS 0.0201 0.0653 -0.0129 0.0146 0.0017 -4.05	2.1518
i-i2wd	
methylCH OS 0.0148 0.0537 -0.0098 0.0116 0.0018 -3.07	2.3848
methylCH CH _{phenyl} 0.0044 0.0132 -0.0020 0.0027 0.0007 -0.63	3.0310
$CH_{nhenyl} O(w) = 0.0089 = 0.0247 = -0.0049 = 0.0055 = 0.0006 = -1.54$	2.5385
OH(w) OS 0.0111 0.0376 -0.0076 0.0085 0.0009 -2.38 -7.65	2.4732
OH(w) NS 0.0189 0.0613 -0.0119 0.0136 0.0017 -3.73	2.1856

^c bond path connects O atoms; ^{d, e} same/opposite side as heterocycle H atom from NH group, resp.

Table S19: Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of sulfisoxazole– H_2O . Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the MO6-2X/6-311++G(d,p) level of theory

Interaction	$ ho(r_{ ext{BCP}})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$\textit{G}(\textit{r}_{\text{BCP}})$	$H(r_{ m BCP})$	E_{HB}	$\sum_{i} E_{\rm HB}^{\rm inter,i}$	BPL (Å)
i-a1wb							e.	
methylCH OS ^b	0.0088	0.0341	-0.0061	0.0073	0.0012	-1.91		3.3495
NH O(w)	0.0219	0.0869	-0.0167	0.0192	0.0025	-5.24		2.0239
CH _{phenyl} O(w)	0.0079	0.0266	-0.0049	0.0058	0.0009	-1.54	-12.90	2.5493
OH(w) OS	0.0234	0.0976	-0.0195	0.0220	0.0025	-6.12		2.0087
i-a1wc						-		
methylCH OS ^b	0.0079	0.0309	-0.0054	0.0066	0.0012	-1.69		3.2960
CH _{phenyl} O(w) ^b	0.0076	0.0295	-0.0050	0.0062	0.0012	-1.57		3.4683
NHanilinic O(w)	0.0167	0.0620	-0.0117	0.0136	0.0019	-3.67	-10.45	2.1987
OH(w) NO	0.0237	0.0836	-0.0166	0.0187	0.0021	-5.21		2.0278
i-a1wa						•		
methylCH OS ^b	0.0088	0.0347	-0.0062	0.0074	0.0012	-1.95		3.2718
NH O(w)	0.0226	0.0904	-0.0176	0.0201	0.0025	-5.52		2.0191
$CH_{nhenyl} O(w)$	0.0066	0.0238	-0.0040	0.0050	0.0010	-1 26	-10 70	3 2129
	0.0163	0.0680	-0.0125	0.0147	0.0022	-3.92	10.70	2 1869
i-a1wd	0.0105	0.0000	0.0120	0.0147	0.0022	5.52		2.1005
	0 0075	0 0289	-0.0051	0.0062	0.0011	-1 60		3 3961
CHabaaul O(w) ^{b,f}	0.0073	0.0205	-0.0031	0.0002	0.0011	-1 38		3 2597
	0.0074	0.0244		0.0000	0.0005	_2 20	-8 66	22227
	0.0144	0.0467	-0.0032	0.0107	0.0015	_/ 30	0.00	2.5527
i a 1 wf	0.0209	0.0705	-0.0140	0.0100	0.0020	-4.35		2.0015
	0 0000	0.0267	0.0061	0 0070	0.0014	2 01		2 0/11
	0.0088	0.0307	-0.0064		0.0014	-2.01		3.0411
	0.0190	0.0713	-0.0140	0.0159	0.0019	-4.39	0.00	2.1348
	0.0083	0.0266	-0.0046	0.0056	0.0010	-1.44	-9.88	2.8/3/
UH(W) UN	0.0168	0.0692	-0.0129	0.0151	0.0022	-4.05		2.1/35
I-a2wa	0.0004	0.0400	0.0004	0.0040	0.0000	4 07		2 4 9 4 2
methylCH CS	0.0064	0.0198	-0.0034	0.0042	0.0008	-1.07		3.1942
methylCH […] CHphenyl	0.0065	0.0185	-0.0031	0.0039	0.0008	-0.97		3.5200
CH _{phenyl} O(w)	0.0131	0.0473	-0.0082	0.0100	0.0018	-2.57		2.2855
OH(w) OS	0.0208	0.0890	-0.0168	0.0195	0.0027	-5.27	-10.35	2.0187
OH(w) NO	0.0124	0.0434	-0.0080	0.0094	0.0014	-2.51		2.4001
i-a2wb								
methylCH CS ^D	0.0065	0.0212	-0.0035	0.0044	0.0009	-1.10		3.8181
methylCH […] CH _{phenyl}	0.0063	0.0184	-0.0032	0.0039	0.0007	-1.00		3.1998
NH O(w)	0.0258	0.0993	-0.0206	0.0227	0.0021	-6.46	-11.76	1.9571
OH(w) OS	0.0211	0.0832	-0.0169	0.0188	0.0019	-5.30	11.70	2.0768
i-i1wa								
NH O(w)	0.0194	0.0783	-0.0146	0.0171	0.0025	-4.58		2.1211
OH(w) OS	0.0236	0.0990	-0.0193	0.0220	0.0027	-6.06	-14.47	1.9414
OH(w) ON ^c	0.0145	0.0667	-0.0122	0.0144	0.0022	-3.83		2.6997
i-i2wa								
methylCH OS ^d	0.0118	0.0390	-0.0076	0.0087	0.0011	-2.38		2.4915
methylCH OS ^e	0.0120	0.0405	-0.0079	0.0090	0.0011	-2.48		2.5121
OH(w) CS ^f	0.0074	0.0244	-0.0044	0.0053	0.0009	-1.38	F 90	3.5344
OH(w) NS	0.0207	0.0743	-0.0141	0.0163	0.0022	-4.42	-5.80	2.1019
i-i2wb								
methylCH OS ^d	0.0120	0.0401	-0.0078	0.0089	0.0011	-2.45		2.4833
methylCH OS ^e	0.0121	0.0408	-0.0080	0.0091	0.0011	-2.51		2.4971
CH _{phenyl} O(w)	0.0073	0.0279	-0.0045	0.0058	0.0013	-1.41	6.40	2.9096
OH(w) NS	0.0225	0.0795	-0.0159	0.0179	0.0020	-4.99	-6.40	2.0708
i-i2wc	-			-	-			
methylCH OS	0.0149	0.0566	-0.0105	0.0123	0.0017	-3.29		2.4774
methylCH CH _{nhenyl}	0.0081	0.0241	-0.0040	0.0050	0.0010	-1.26		2.7460
CHphenyl O(w)	0.0116	0.0357	-0.0069	0.0079	0.0010	-2.16		2.3993
OH(w) OS	0.0150	0.0545	-0.0112	0.0124	0.0012	-3.51	-9.81	2.2958
OH(w) NS	0.0189	0.0666	-0.0132	0.0149	0.0017	-4.14		2.1870
. ,								

Table S19 (continued): Summary of the QTAIM results regarding the non-covalent interactions in the isomers of the amido and imido tautomers of sulfisoxazole– H_2O . Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived at the M06-2X/6-311++G(d,p) level of theory

i-i2wd								
methylCH OS	0.0150	0.0563	-0.0105	0.0123	0.0017	-3.29		2.4513
methylCH CH _{phenyl}	0.0082	0.0244	-0.0040	0.0051	0.0011	-1.26		2.7615
CH _{phenyl} O(w)	0.0115	0.0353	-0.0068	0.0078	0.0010	-2.13		2.4052
OH(w) OS	0.0153	0.0558	-0.0115	0.0127	0.0012	-3.61	-9.79	2.2761
OH(w) NS	0.0186	0.0653	-0.0129	0.0146	0.0017	-4.05		2.1988
i-i2we								
methylCH CH _{phenyl} g	0.0055	0.0167	-0.0029	0.0035	0.0006	-0.91		2.3577
methylCH OS ^b	0.0149	0.0649	-0.0118	0.0140	0.0022	-3.70		2.8731
OH(w) CH _{phenyl}	0.0078	0.0236	-0.0038	0.0049	0.0011	-1.19	_1 22	2.9960
OH(w) ON ^c	0.0126	0.0514	-0.0100	0.0114	0.0014	-3.14	-4.33	2.8315

^b bond path goes to the C atom; ^c bond path connects O atoms; ^{d, e} same/opposite side as heterocycle H atom from NH group, resp.; ^f bond path goes to the O atom; ^g bond path connects the two H atoms

Table S20: Summary of the QTAIM results regarding the non-covalent interactions in the two isomers of the amido tautomers of **sulfamethoxazole–H₂O** studied further with IQA analysis. Atomic units are except unless for the energy of the hydrogen bonds (kcal/mol). The geometries were optimized and the wave functions were derived using **6-311++G(3df,3pd)** as basis set

Interaction	$ ho(r_{ m BCP})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$G(r_{ m BCP})$	$H(r_{ m BCP})$	$E_{\rm HB}$	$\sum_{i} E_{\rm HB}^{\rm inter,i}$	BPL (Å)
M05-2X								
m-a1wa								
CH OS	0.0113	0.0415	-0.0079	0.0091	0.0012	-2.48		2.8578
NH O(w)	0.0223	0.0834	-0.0176	0.0192	0.0016	-5.52		2.0488
CH _{pheny} O(w)	0.0047	0.0167	-0.0027	0.0034	0.0013	-0.85	-11.83	2.8988
OH(w) NO	0.0234	0.0818	-0.0174	0.0189	0.0015	-5.46		2.0669
m-a1wb								
CH OS	0.0114	0.0416	-0.0079	0.0092	0.0013	-2.48		2.8267
NH O(w)	0.0209	0.0789	-0.0162	0.0179	0.0017	-5.08		2.0701
CH _{pheny} O(w)	0.0075	0.0277	-0.0047	0.0058	0.0011	-1.47	-12.61	2.5396
OH(w) OS	0.0230	0.0947	-0.0193	0.0215	0.0022	-6.06		2.0127
M06-2X								
m-a1wa								
CH OS	0.0112	0.0413	-0.0078	0.0090	0.0012	-2.45		2.8319
NH O(w)	0.0228	0.0883	-0.0182	0.0201	0.0019	-5.71		2.0338
CH _{pheny} O(w)	0.0053	0.0183	-0.0030	0.0038	0.0008	-0.94	-12.23	2.8629
OH(w) NO	0.0234	0.0850	-0.0178	0.0195	0.0017	-5.58		2.0601
m-a1wb								
CH OS	0.0114	0.0422	-0.0079	0.0092	0.0013	-2.48		2.7672
NH O(w)	0.0214	0.0832	-0.0167	0.0188	0.0021	-5.24		2.0542
CH _{pheny} O(w)	0.0082	0.0298	-0.0051	0.0063	0.0012	-1.60	-12.86	2.5037
OH(w) OS	0.0227	0.0968	-0.0192	0.0217	0.0025	-6.02		2.0149
B3LYP								
m-a1wa								
CH OS	0.0108	0.0394	-0.0071	0.0085	0.0014	-2.23		2.6948
NH O(w)	0.0231	0.0780	-0.0169	0.0182	0.0013	-5.30	-10 98	2.0405
OH(w) NO	0.0252	0.0800	-0.0181	0.0191	0.0010	-5.68	10.56	2.0407
m-a1wb								
CH OS	0.0100	0.0365	-0.0065	0.0078	0.0013	-2.04		2.7633
NH O(w)	0.0207	0.0720	-0.0148	0.0164	0.0016	-4.64		2.0802
CH _{pheny} O(w)	0.0043	0.0161	-0.0026	0.0033	0.0007	-0.82	-10.70	2.7952
OH(w) OS	0.0218	0.0841	-0.0167	0.0189	0.0022	-5.24		2.0354

Table S21: Summary of the QTAIM results regarding the non-covalent interactions in the two isomers of the amido tautomers of **sulfisoxazole–H₂O** studied further with IQA analysis. Atomic units are used except for the energy of the hydrogen bonds (kcal/mol). The wave functions were derived using **6-311++G(3df,3p)** as basis set. All structures were fully optimized at the same level of theory

Interaction	$ ho(r_{ ext{BCP}})$	$ abla^2 ho(r_{ m BCP})$	$V(r_{ m BCP})$	$G(r_{ m BCP})$	$H(r_{ m BCP})$	E_{HB}	$\sum_{i} E_{\rm HB}^{\rm inter,i}$	BPL (Å)
M05-2X								
i-a1wb								
methylCH OS	0.0081	0.0313	-0.0055	0.0067	0.0012	-1.73		3.1396
NH O(w)	0.0213	0.0807	-0.0167	0.0184	0.0017	-5.24		2.0583
CH _{phenyl} O(w)	0.0058	0.0211	-0.0036	0.0044	0.0008	-1.13	-12.61	2.6909
OH(w) OS	0.0236	0.0962	-0.0199	0.0220	0.0021	-6.24		2.0007
i-a1wa								
methylCH OS ^b	0.0083	0.0323	-0.0057	0.0069	0.0012	-1.79		3.4132
NH O(w)	0.0212	0.0808	-0.0164	0.0183	0.0019	-5.15		2.0626
CH _{phenyl} O(w)	0.0044	0.0165	-0.0024	0.0033	0.0009	-0.75	-9.19	3.3239
OH(w) ON	0.0144	0.0608	-0.0105	0.0128	0.0023	-3.29		2.2363
M06-2X								
i-a1wb								
methylCH OS ^b	0.0086	0.0331	-0.0059	0.0071	0.0012	-1.85		3.3986
NH O(w)	0.0218	0.0851	-0.0173	0.0193	0.0020	-5.43		2.0423
CH _{phenyl} O(w)	0.0066	0.0233	-0.0041	0.0050	0.0009	-1.29	-12.90	2.6369
OH(w) OS	0.0231	0.0980	-0.0197	0.0221	0.0024	-6.18		2.0056
i-a1wa								
methylCH OS ^b	0.0087	0.0339	-0.0060	0.0073	0.0013	-1.88		3.3299
NH O(w)	0.0220	0.0868	-0.0173	0.0195	0.0022	-5.43		2.0438
CH _{phenyl} O(w) ^b	0.0055	0.0201	-0.0032	0.0041	0.0009	-1.00	-9.94	3.5917
OH(w) ON	0.0151	0.0647	-0.0112	0.0137	0.0025	-3.51		2.2094
B3LYP								
i-a1wb								
methylCH OS	0.0064	0.0236	-0.0039	0.0049	0.0010	-1.22		2.9449
NH O(w)	0.0212	0.0736	-0.0153	0.0168	0.0015	-4.80		2.0694
CH _{phenyl} O(w)	0.0033	0.0131	-0.0019	0.0026	0.0007	-0.60	-10.86	2.9401
OH(w) OS	0.0225	0.0856	-0.0174	0.0194	0.0020	-5.46		2.0194
i-a1wa								0
methylCH OS	0.0072	0.0269	-0.0046	0.0056	0.0010	-1.44		2.9230
NH O(w)	0.0219	0.0763	-0.0159	0.0175	0.0016	-4.99	-7.78	2.0519
OH(w) ON	0.0132	0.0517	-0.0089	0.0109	0.0020	-2.79		2.2835

^b bond path goes to C atom

IQF results with B3LYP

Table S22: Summary of the IQF results (kcal/mol) calculated using structures optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The 5-methyl-1,2-oxazole and the 3,4-dimethyl-1,2-oxazole group are abbreviated both with htc

m-a1wa				i-a1wa			
Group \mathcal{G}	E_{def}			Group \mathcal{G}	E_{def}		
$\overline{\mathrm{SO}_2}$	-1.03			SO_2	-0.77		
NH	4.81			NH	4.83		
htc	5.09			htc	-0.70		
$(PhNH_2)$	-0.27			$(PhNH_2)$	-0.08		
H ₂ O	17.88			H_2O	14.06		
$\overline{\text{Groups }\mathcal{G}\cdots\mathcal{H}}$	$E_{\rm int}$	$V_{\rm cl}$	$V_{\rm xc}$	Groups $\mathcal{G} \cdots \mathcal{H}$	$E_{\rm int}$	$V_{\rm cl}$	$V_{\rm xc}$
$\overline{\mathrm{SO}_2\cdots\mathrm{H}_2\mathrm{O}}$	-3.35	-3.05	-0.31	$SO_2 \cdots H_2O$	-2.94	-2.61	-0.33
$NH \cdot \cdot \cdot H_2O$	-15.43	-0.57	-14.86	$NH \cdots H_2O$	-14.25	-0.29	-13.96
$htc \cdot \cdot \cdot H_2O$	-25.99	-7.66	-18.33	$htc \cdots H_2O$	-14.40	-5.30	-9.10
$(PhNH_2) \cdot \cdot \cdot H_2O$	-0.88	-0.38	-0.50	$(PhNH_2)\cdots H_2O$	-1.56	-0.46	-1.10
$SO_2 \cdots NH$	3.57	3.86	-0.30	$SO_2 \cdots NH$	3.03	3.71	-0.67
$SO_2 \cdots (PhNH_2)$	0.23	0.19	0.04	$SO_2 \cdots (PhNH_2)$	0.36	-0.09	0.46
SO_2 ···htc	-2.31	-2.30	-0.02	SO_2 ···htc	-2.25	-2.26	0.01
$\mathrm{NH} \cdots (\mathrm{Ph}\mathrm{NH}_2)$	0.15	-0.09	0.24	NH ···(Ph NH_2)	0.31	0.07	0.25
NH ···htc	8.46	10.98	-2.52	NH ···htc	8.62	10.68	-2.06
$(PhNH_2)\cdots htc$	0.11	0.05	0.04	$(PhNH_2)\cdots htc$	0.07	0.02	0.05
$E_{\rm bind}$	-8.96			$E_{ m bind}$	-5.67		
$\sum E_{\rm HB}$	-10.98			$\sum E_{\rm HB}$	-7.78		
$E_{\rm complex}$	-8.73			$E_{\rm complex}$	-6.42		
m				i-a1wb			
m-a1wb	Enc			i-a1wb	Enc		
m-a1wb Group <i>G</i>	E_{def}			i-a1wb Group \mathcal{G}	E_{def}		
	$\frac{E_{\text{def}}}{2.39}$			i-a1wb Group \mathcal{G} SO ₂ NH	$\frac{E_{\rm def}}{1.70}$		
m-a1wb Group <i>G</i> SO ₂ NH htc	E_{def} 2.39 6.40 -1.60			i-a1wb Group <i>G</i> SO ₂ NH htc	E_{def} 1.70 5.41 -2.19		
m-a1wb Group G SO2 NH htc (PhNH2)	$E_{ m def}$ 2.39 6.40 -1.60 1.87			i-a1wb Group \mathcal{G} SO ₂ NH htc (PhNH ₂)	$\frac{E_{\rm def}}{1.70} \\ 5.41 \\ -2.19 \\ 1.80$		
m-a1wb Group <i>G</i> SO ₂ NH htc (PhNH ₂) H ₂ O	$\frac{E_{\rm def}}{2.39} \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14$			i-a1wb Group \mathcal{G} SO ₂ NH htc (PhNH ₂) HaO	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \end{array}$		
m-a1wb Group G SO2 NH htc (PhNH2) H2O Groups Guidt	$\frac{E_{\rm def}}{2.39} \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ E_{\rm e}$	V.	V	i-a1wb Group \mathcal{G} SO ₂ NH htc (PhNH ₂) H ₂ O	$\frac{E_{\rm def}}{1.70} \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ F_{\rm c}$	V.	V
$ \begin{array}{c} \mathbf{m-a1wb} \\ \hline \mathbf{Group} \ \mathcal{G} \\ \hline \mathbf{SO}_2 \\ \mathbf{NH} \\ \mathbf{htc} \\ (\mathbf{PhNH}_2) \\ \mathbf{H}_2\mathbf{O} \\ \hline \mathbf{Groups} \ \mathcal{G} \\ \hline \mathbf{SO}_2 \\ \hline \mathbf{H}_2\mathbf{O} \\ \hline \end{array} $	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline E_{\rm int} \\ 22.15 \\ \end{array}$		$V_{\rm xc}$	i-a1wb Group \mathcal{G} SO ₂ NH htc (PhNH ₂) H ₂ O Groups $\mathcal{G} \cdots \mathcal{H}$	$E_{def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ E_{int} \\ 22.51 \\ 1.00 \\ E_{int} \\ 22.51 \\ E_{int} \\ 22.51 \\ E_{int} \\ 22.51 \\ E_{int} $		$V_{\rm xc}$
m-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2\cdotsH2ONH \cdots H2O	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline E_{\rm int} \\ -22.15 \\ 15.17 \end{array}$	$V_{\rm cl}$ -7.55	$V_{\rm xc}$ -14.61	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2O	$\begin{array}{c} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline E_{\rm int} \\ -22.51 \\ 15.67 \end{array}$	$V_{\rm cl}$ -7.54	$V_{\rm xc}$ -14.97
$ \begin{array}{c} \textbf{m-a1wb} \\ \hline \textbf{Group} \ \mathcal{G} \\ \hline \textbf{SO}_2 \\ \textbf{NH} \\ \textbf{htc} \\ (PhNH_2) \\ \hline \textbf{H}_2\textbf{O} \\ \hline \textbf{Groups} \ \mathcal{G} \\ \hline \textbf{Groups} \ \mathcal{G} \\ \hline \textbf{SO}_2 \\ \hline \textbf{NH} \\ \hline \textbf{NH}_2\textbf{O} \\ \hline \textbf{MH} \\ \hline \textbf{NH}_2\textbf{O} \\ \hline \textbf{MH} \\ \hline \textbf{NH}_2\textbf{O} \\ \hline \textbf{MH} \\ \hline \textbf{NH} \hline \textbf{NH} \\ \hline \textbf{NH} \hline \textbf{NH} \\ \hline \textbf{NH} \\ \hline \textbf{NH} \hline \textbf{NH}$	$\frac{E_{\text{def}}}{2.39} \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \frac{E_{\text{int}}}{-22.15} \\ -15.17 \\ 1.32 \\ 1.32 \\ 1.32 \\ 1.32 \\ 1.33 \\$	$V_{\rm cl}$ -7.55 -1.81	$V_{\rm xc}$ -14.61 -13.36 0.24	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtau H O	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline E_{\rm int} \\ -22.51 \\ -15.67 \\ 1.56 \end{array}$	V_{cl} -7.54 -1.92	$V_{\rm xc}$ -14.97 -13.75 0.28
m-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2\cdotsH2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline E_{\rm int} \\ -22.15 \\ -15.17 \\ -1.33 \\ 2.28 \\ \end{array}$	$\frac{V_{\rm cl}}{-7.55}$ -1.81 -0.99 0.54	$V_{\rm xc}$ -14.61 -13.36 -0.34 2.74	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH) \cdots H O	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ 2.25 \end{array}$	$ \frac{V_{\rm cl}}{-7.54} \\ -1.92 \\ -1.28 \\ 0.20 $	$V_{\rm xc}$ -14.97 -13.75 -0.28 2.05
$ \begin{array}{c} \textbf{m-a1wb} \\ \hline \text{Group } \mathcal{G} \\ \hline \text{SO}_2 \\ \text{NH} \\ \text{htc} \\ (\text{PhNH}_2) \\ \hline \text{H}_2\text{O} \\ \hline \text{Groups } \mathcal{G} \\ \hline \text{SO}_2 \\ \hline \text{H}_2\text{O} \\ \hline \text{SO}_2 \\ \hline \text{H}_2\text{O} \\ \hline \text{NH} \\ \hline \text{H}_2\text{O} \\ \hline \text{NH} \\ \hline \text{H}_2\text{O} \\ \hline \text{htc} \\ \hline \text{H}_2\text{O} \\ \hline \text{(PhNH}_2) \\ \hline \text{H}_2\text{O} \\ \hline \end{array} $	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \end{array}$	$\frac{V_{\rm cl}}{-7.55} \\ -1.81 \\ -0.99 \\ -0.54$	$ \frac{V_{\rm xc}}{-14.61} \\ -13.36 \\ -0.34 \\ -2.74 $	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2O	$\begin{array}{c} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \end{array}$	$ \frac{V_{\rm cl}}{-7.54} \\ -1.92 \\ -1.28 \\ -0.20 $	$ \frac{V_{\rm xc}}{-14.97} \\ -13.75 \\ -0.28 \\ -2.05 $
$ \begin{array}{c} \mathbf{m-a1wb} \\ \hline \mathbf{Group} \ \mathcal{G} \\ \hline \mathbf{SO}_2 \\ \mathbf{NH} \\ \mathbf{htc} \\ (\mathbf{PhNH}_2) \\ \mathbf{H}_2\mathbf{O} \\ \hline \mathbf{Groups} \ \mathcal{G}^{\cdots} \mathcal{H} \\ \hline \mathbf{SO}_2^{\cdots} \mathbf{H}_2\mathbf{O} \\ \mathbf{NH}^{\cdots} \mathbf{H}_2\mathbf{O} \\ \mathbf{NH}^{\cdots} \mathbf{H}_2\mathbf{O} \\ \mathbf{htc}^{\cdots} \mathbf{H}_2\mathbf{O} \\ (\mathbf{PhNH}_2)^{\cdots} \mathbf{H}_2\mathbf{O} \\ \mathbf{SO}_2^{\cdots} \mathbf{NH} \end{array} $	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ E_{\rm int} \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ 5.53 \\ \end{array}$	$\frac{V_{\rm cl}}{-7.55}$ -1.81 -0.99 -0.54 7.09	$\frac{V_{\rm xc}}{-14.61}$ -13.36 -0.34 -2.74 -1.57	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NH	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ 7.69 \end{array}$	$ \frac{V_{\rm cl}}{-7.54} \\ -1.92 \\ -1.28 \\ -0.20 \\ 9.44 $	$ \frac{V_{\rm xc}}{-14.97} \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 $
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ E_{\rm int} \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ 5.53 \\ 1.83 \end{array}$	$ \frac{V_{\rm cl}}{-7.55} \\ -1.81 \\ -0.99 \\ -0.54 \\ 7.09 \\ 1.57 $	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)	$\begin{array}{r} E_{\text{def}} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ E_{\text{int}} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \end{array}$	$ \frac{V_{\rm cl}}{-7.54} \\ -1.92 \\ -1.28 \\ -0.20 \\ 9.44 \\ 1.24 $	$ \frac{V_{\rm xc}}{-14.97} \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 $
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ \hline \\ 5.53 \\ 1.83 \\ -1.75 \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots htc	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \end{array}$	$ \frac{V_{cl}}{-7.54} \\ -1.92 \\ -1.28 \\ -0.20 \\ 9.44 \\ 1.24 \\ -2.06 $	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \end{array}$
$m-a1wb$ Group \mathcal{G} SO_2 NHhtc(PhNH ₂) H_2O Groups $\mathcal{G}\cdots\mathcal{H}$ $SO_2\cdotsH_2O$ NH \cdotsH_2O htc \cdotsH_2O (PhNH ₂) \cdotsH_2O SO ₂ \cdots NHSO ₂ \cdots (PhNH ₂)SO ₂ \cdots htcNH \cdots (PhNH ₂)	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ \hline \\ 5.53 \\ 1.83 \\ -1.75 \\ -1.15 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \\ -1.48 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \\ 0.33 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots (PhNH2)	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \\ -1.01 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.54 \\ -1.92 \\ -1.28 \\ -0.20 \\ \\ 9.44 \\ 1.24 \\ -2.06 \\ -1.25 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \\ 0.24 \end{array}$
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -15.17 \\ -1.33 \\ -3.28 \\ \hline \\ 5.53 \\ 1.83 \\ -1.75 \\ -1.15 \\ 2.70 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \\ -1.48 \\ 3.00 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \\ 0.33 \\ -0.30 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2) \cdots H2OSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots NH \cdots	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \\ -1.01 \\ 3.46 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.54 \\ -1.92 \\ -1.28 \\ -0.20 \\ \\ 9.44 \\ 1.24 \\ -2.06 \\ -1.25 \\ 3.90 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \\ 0.24 \\ -0.44 \end{array}$
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ \hline \\ 5.53 \\ 1.83 \\ -1.75 \\ -1.15 \\ 2.70 \\ 0.61 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \\ -1.48 \\ 3.00 \\ 0.61 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \\ 0.33 \\ -0.30 \\ 0.01 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots NH \cdots (PhNH2)NH \cdots (PhNH2) \cdots htc(PhNH2) \cdots htc	$\begin{array}{c} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \\ -1.01 \\ 3.46 \\ 0.55 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.54 \\ -1.92 \\ -1.28 \\ -0.20 \\ 9.44 \\ 1.24 \\ -2.06 \\ -1.25 \\ 3.90 \\ 0.54 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \\ 0.24 \\ -0.44 \\ 0.00 \end{array}$
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ \hline \\ 5.53 \\ 1.83 \\ -1.75 \\ -1.15 \\ 2.70 \\ 0.61 \\ -7.97 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \\ -1.48 \\ 3.00 \\ 0.61 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \\ 0.33 \\ -0.30 \\ 0.01 \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots htc(PhNH2) \cdots htcEhind	$\begin{array}{r} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ E_{\rm int} \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \\ -1.01 \\ 3.46 \\ 0.55 \\ -8.01 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.54 \\ -1.92 \\ -1.28 \\ -0.20 \\ \\ 9.44 \\ 1.24 \\ -2.06 \\ -1.25 \\ 3.90 \\ 0.54 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \\ 0.24 \\ -0.44 \\ 0.00 \end{array}$
	$\begin{array}{r} E_{\rm def} \\ 2.39 \\ 6.40 \\ -1.60 \\ 1.87 \\ 17.14 \\ \hline \\ -22.15 \\ -15.17 \\ -1.33 \\ -3.28 \\ \\ 5.53 \\ 1.83 \\ -1.75 \\ -1.15 \\ 2.70 \\ 0.61 \\ -7.97 \\ -10.70 \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.55 \\ -1.81 \\ -0.99 \\ -0.54 \\ \hline 7.09 \\ 1.57 \\ -1.75 \\ -1.48 \\ 3.00 \\ 0.61 \\ \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.61 \\ -13.36 \\ -0.34 \\ -2.74 \\ -1.57 \\ 0.25 \\ 0.00 \\ 0.33 \\ -0.30 \\ 0.01 \\ \end{array}$	i-a1wbGroup \mathcal{G} SO2NHhtc(PhNH2)H2OGroups $\mathcal{G}\cdots\mathcal{H}$ SO2 \cdots H2ONH \cdots H2Ohtc \cdots H2O(PhNH2) \cdots H2OSO2 \cdots NHSO2 \cdots (PhNH2)SO2 \cdots (PhNH2)SO2 \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots (PhNH2)NH \cdots -htc(PhNH2) \cdots -htc $\mathcal{E}_{\text{bind}}$ $\sum \mathcal{E}_{\text{HB}}$	$\begin{array}{c} E_{\rm def} \\ 1.70 \\ 5.41 \\ -2.19 \\ 1.80 \\ 17.17 \\ \hline \\ -22.51 \\ -15.67 \\ -1.56 \\ -2.25 \\ \hline \\ 7.69 \\ 1.46 \\ -2.06 \\ -1.01 \\ 3.46 \\ 0.55 \\ -8.01 \\ -10.86 \\ \end{array}$	$\begin{array}{r} V_{\rm cl} \\ -7.54 \\ -1.92 \\ -1.28 \\ -0.20 \\ \\ 9.44 \\ 1.24 \\ -2.06 \\ -1.25 \\ 3.90 \\ 0.54 \end{array}$	$\begin{array}{r} V_{\rm xc} \\ -14.97 \\ -13.75 \\ -0.28 \\ -2.05 \\ -1.75 \\ 0.23 \\ 0.00 \\ 0.24 \\ -0.44 \\ 0.00 \end{array}$

Cartesian coordinates

Table S23: Coordinates (in Å) of the global minimum of SMX (left) and SIX (right)

(a) **m-a1** M05-2X/6-311++G(3df,3pd)

(b) **i-a1** M05-2X/6-311++G(3df,3pd)

С	-3.071399	-1.519238	-0.008135	S	-0.139815	1.966220	0.148478
С	-2.055108	-1.548447	0.950862	Ο	1.127832	-0.794774	-1.578047
С	-1.168188	-0.499174	1.063379	Ο	0.553717	1.999677	1.397047
С	-1.285851	0.593460	0.216096	Ο	-0.715711	3.136968	-0.436586
С	-2.292375	0.640912	-0.739378	Ν	0.983772	1.455260	-0.991198
С	-3.178146	-0.407517	-0.850524	Ν	1.801598	-1.943135	-1.227663
Η	-1.970453	-2.399594	1.608519	Ν	-4.058421	-2.426929	0.204288
Η	-0.394198	-0.510821	1.812574	С	-1.337543	0.701066	0.218276
Η	-2.384367	1.507189	-1.374296	С	1.562622	0.206825	-0.798493
Η	-3.964724	-0.374156	-1.588278	С	2.494190	-0.228521	0.076777
\mathbf{S}	-0.134317	1.903346	0.314927	С	2.591696	-1.616211	-0.248856
Ο	-0.734353	3.086945	-0.215679	С	-1.154431	-0.372343	1.079886
Ο	0.472560	1.868897	1.609142	С	-2.431271	0.745549	-0.635325
Ν	1.070412	1.538975	-0.772030	С	3.260198	0.533349	1.100410
Ν	-3.931568	-2.582498	-0.146567	С	-2.064893	-1.405838	1.082587
Η	-4.010282	-3.212104	0.629281	С	-3.344081	-0.285413	-0.627031
Η	-4.792629	-2.414739	-0.631357	С	-3.171979	-1.378977	0.228506
С	1.813342	0.370287	-0.623469	\mathbf{C}	3.482407	-2.626557	0.382800
С	3.067497	-1.242600	0.101867	Η	0.633692	1.610900	-1.926040
Ν	2.037587	-0.378230	-1.661270	Η	-0.307272	-0.381910	1.745730
Η	0.784381	1.715861	-1.724514	Η	-2.565968	1.595041	-1.285081
Ο	2.844351	-1.396811	-1.208431	Η	3.182667	1.597889	0.910956
С	2.441758	-0.130752	0.548948	Η	2.869685	0.353230	2.098808
С	3.920094	-2.260502	0.758923	Η	4.307022	0.241233	1.084693
Η	3.470453	-3.245094	0.666264	Η	-1.927004	-2.244768	1.746694
Η	4.899025	-2.289500	0.289087	Η	-4.199593	-0.255143	-1.283678
Η	4.036947	-2.019729	1.808556	Η	3.274747	-2.702594	1.446901
Η	2.429689	0.290597	1.532732	Η	3.328456	-3.592943	-0.082828
				Η	4.523760	-2.336997	0.267440
				Η	-4.060978	-3.049528	0.989319
				Η	-4.959008	-2.262829	-0.203074

Table S24: Coordinates (in Å) of the two isomers of SMX and SIX presented in more detail in the main text

()	, uz	•/ • • • +	() () () () () () () ()	()			(compared)
С	-3.090071	1.457331	0.205557	С	-2.977776	-1.759268	-0.292704
С	-2.404938	1.532682	-1.008659	С	-2.237141	-1.896376	0.883126
С	-1.494039	0.556947	-1.359506	С	-1.363211	-0.904739	1.278930
С	-1.267209	-0.508021	-0.503062	С	-1.228169	0.237385	0.506407
С	-1.936105	-0.597221	0.711932	С	-1.952384	0.389754	-0.670513
С	-2.838698	0.380346	1.063331	С	-2.819294	-0.602854	-1.065726
Η	-2.590660	2.362341	-1.673064	Η	-2.349738	-2.787133	1.481412
Η	-0.964219	0.604720	-2.296246	Η	-0.791408	-1.000749	2.186721
Η	-1.742513	-1.424713	1.376207	Η	-1.831946	1.277648	-1.272172
Η	-3.356710	0.321436	2.007911	Η	-3.380683	-0.495216	-1.980746
\mathbf{S}	-0.098218	-1.740587	-0.917952	\mathbf{S}	-0.108753	1.490122	0.984645
Ο	-0.622402	-3.027627	-0.587645	Ο	-0.734834	2.773678	0.815583
Ο	0.412181	-1.447360	-2.222500	Ο	0.463706	1.122939	2.242004
Ν	1.148945	-1.526151	0.159365	Ν	1.095144	1.477641	-0.144787
Ν	-3.967120	2.451715	0.577467	Ν	-3.817706	-2.764504	-0.711796
Η	-4.335748	3.027548	-0.155742	Η	-4.119708	-3.425080	-0.021107
Η	-4.633930	2.222841	1.290275	Η	-4.520163	-2.521448	-1.384236
С	1.783378	-0.293020	0.221106	С	1.835617	0.315988	-0.347504
С	2.811097	1.569079	-0.218391	С	3.026918	-1.482324	-0.123737
Ν	2.065640	0.232928	1.379338	Ν	2.156246	-0.031490	-1.557586
Η	0.913497	-1.901805	1.076453	Η	0.822181	1.966048	-0.995969
Ο	2.728145	1.406654	1.107493	Ο	2.923534	-1.166326	-1.419014
С	2.232132	0.524638	-0.851280	С	2.358794	-0.578259	0.626839
С	3.494311	2.792631	-0.697731	С	3.818529	-2.689676	0.208884
Η	2.971303	3.677317	-0.345660	Η	3.375573	-3.568427	-0.251353
Η	4.512009	2.826603	-0.319610	Η	4.833814	-2.587139	-0.163371
Η	3.516589	2.799632	-1.780578	Η	3.845996	-2.826543	1.283081
Η	2.139654	0.335914	-1.900643	Η	2.258002	-0.526336	1.690954
Ο	0.555301	-1.533758	3.028883	Ο	-0.448380	3.281373	-1.901362
Η	1.114399	-0.759460	2.870212	Η	-0.684016	3.535551	-1.000131
Η	0.970597	-2.028056	3.734897	Η	-0.157158	4.074246	-2.349930

(a) **m-a1wa** M05-2X/6-311++G(3df,3pd) (b) **m-a1wb** M05-2X/6-311++G(3df,3pd)

Table S24 (continued): Coordinates (in Å) of the two isomers of SMX and SIX presented in more detail in the main text

(c) **i-a1wb** M05-2X/6-311++G(3df,3pd)

(d) i-a1wa M05-2X/6-311++G(3df,3pd)

S	0.156189	1.606981	-0.829241	С	-3.119547	1.467645	-0.372948
0	-1.136465	-0.505671	1.607692	С	-2.060245	1.542417	-1.281387
0	-0.568470	1.349504	-2.032792	С	-1.150043	0.511709	-1.379602
0	0.811499	2.871181	-0.623199	С	-1.290490	-0.6063271	-0.570046
Ν	-0.926634	1.497313	0.435241	С	-2.334359	-0.696572	0.341222
Ν	-1.870165	-1.669579	1.599223	С	-3.243479	0.333409	0.436389
Ν	3.845762	-2.860346	0.199640	Η	-1.957982	2.415312	-1.907250
С	1.294964	0.311492	-0.580138	Η	-0.335842	0.557341	-2.083973
С	-1.561905	0.271987	0.601079	Η	-2.424496	-1.569797	0.966386
С	-2.545882	-0.335017	-0.097418	Η	-4.057873	0.270786	1.141419
С	-2.686785	-1.577637	0.592390	\mathbf{S}	-0.087242	-1.870430	-0.619474
С	1.148169	-0.874309	-1.284564	Ο	-0.674144	-3.108868	-0.215555
С	2.286921	0.448886	0.383124	Ο	0.647761	-1.742547	-1.839490
С	-3.324150	0.162699	-1.264332	Ν	0.977692	-1.493212	0.620692
С	2.005923	-1.924192	-1.035911	Ν	-4.005429	2.512704	-0.246133
С	3.142518	-0.600204	0.628603	Η	-4.059212	3.159572	-1.009915
С	3.015568	-1.802400	-0.077372	Η	-4.887581	2.312057	0.185459
С	-3.642429	-2.674801	0.282102	С	1.551318	-0.230546	0.578567
Η	-0.524435	1.896235	1.282549	С	2.584063	1.652364	0.271726
Η	0.370051	-0.958063	-2.024997	Η	0.550409	-1.708566	1.519633
Η	2.380421	1.369475	0.936915	С	2.511473	0.306785	-0.203719
Η	-3.191006	1.232879	-1.374901	С	3.490280	2.726657	-0.215480
Η	-2.989997	-0.302834	-2.188036	Η	3.314270	3.638187	0.343513
Η	-4.381268	-0.055069	-1.135011	Η	4.528384	2.427967	-0.094623
Η	1.898514	-2.849754	-1.579665	Η	3.319444	2.913670	-1.272351
Η	3.914350	-0.502944	1.376065	С	3.327122	-0.334361	-1.270763
Η	-3.479136	-3.045717	-0.726370	Η	3.254142	-1.413505	-1.199125
Η	-3.510100	-3.486179	0.988243	Η	2.974158	-0.051293	-2.259040
Η	-4.665941	-2.313521	0.341849	Η	4.369077	-0.038028	-1.180514
Η	3.907207	-3.591699	-0.482385	Ο	1.076775	0.687365	1.444314
Η	4.702034	-2.663119	0.681037	Ν	1.755040	1.873117	1.246922
0	0.815958	3.154802	2.140426	Ο	-0.474193	-1.069761	3.153971
Η	0.948405	3.470411	1.237297	Η	-0.205383	-0.161689	2.986300
Н	0.601488	3.918916	2.674133	Н	-0.282921	-1.241988	4.075625

References

- (1) TURBOMOLE V6.6 2014, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- (2) G. P. Bettinetti, F. Giordano, A. La Manna, G. Giuseppetti and C. Tadini, Cryst. Struct. Commun., 1982, 11, 821–828.
- (3) C. P. Price, A. L. Grzesiak and A. J. Matzger, J. Am. Chem. Soc., 2005, 127, 5512– 5517.
- (4) B. V. Noumerov, Mon. Not. R. Astron. Soc., 1924, 84, 592–601.
- (5) I. N. Levine, *Quantum Chemistry*, Pearson Education, Upper Saddle River, NJ, 7th edn, 2014.
- (6) J. C. D. Brand, D. R. Williams and T. J. Cook, J. Mol. Spectrosc., 1966, 20, 359–380.
- (7) D. A. Chernoff and S. A. Rice, J. Chem. Phys., 1979, 70, 2511–2520.