Supporting information for

Ultrafast photophysics of the environment-sensitive 4'-methoxy-3-hydroxyflavone fluorescent dye

Anastasia Ioanna Skilitsi¹, Damianos Agathangelou¹, Ievgen Shulov,² Jamie Conyard¹, Stefan Haacke¹, Yves Mély², Andrey Klymchenko,² Jérémie Léonard¹

1. Institut de Physique et Chimie des Matériaux de Strasbourg, & Labex NIE CNRS Université de Strasbourg, Strasbourg, France

2. Laboratoire de Biophotonique et Pharmacologie, CNRS - Université de Strasbourg, Illkirch, France

Jeremie.Leonard@ipcms.unistra.fr

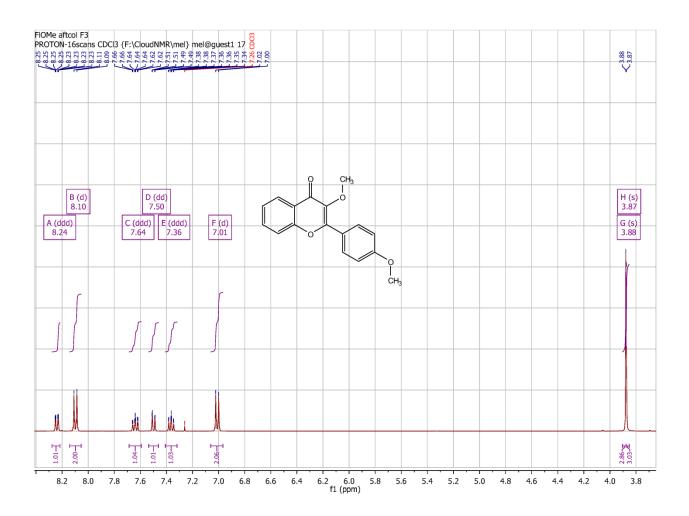


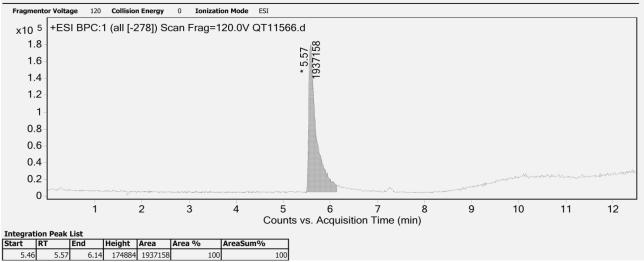
Figure S1. ¹H NMR spectrum of 4'-methoxy-3-methoxyflavone.

Qualitative Analysis Report

Data Filename	QT11566.d	Sample Name	FIOMe
Inj. Vol.	0.1	Position	P1-D1
Instrument Name	SCA Illkirch QToF	User Name	PW
Acq Method	C18-2,1x5x1,8.m	Acquired Time	12/18/2015 10:04:46 AM
IRM Calibration Status	Success	DA Method	C18-2,1x5x1,8.m
Commont			

Sample Group Info.

User Chromatograms



Qualitative Analysis Report

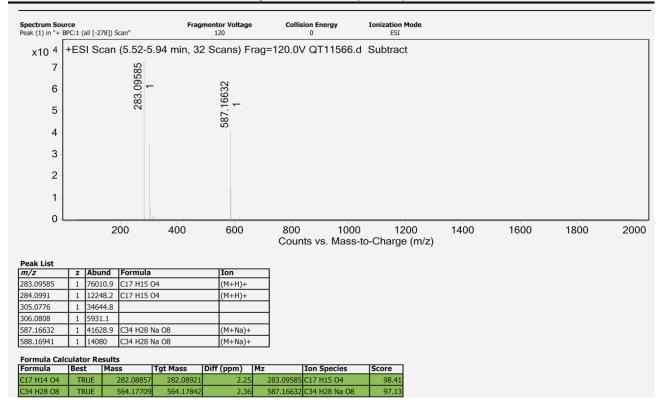


Figure S2. LCMS data of 4'-methoxy-3-methoxyflavone.

Supplementary Note 1: Relation between the ratio of the total N* and T* fluorescence intensities and the parameters of the rate equation model.

Within the model introduced in Figure 9, the time evolution of the excited state populations $N^*(t)$ and $T^*(t)$ can be written:

$$\frac{dN^*}{dt}(t) = -\frac{N^*(t)}{\tau_N} + k_- T^*(t)$$
$$\frac{dT^*}{dt}(t) = k_+ N^*(t) - \frac{T^*(t)}{\tau_T}$$

where τ_N and τ_T are the N* and T* lifetimes, i.e. the inverse of the sum of all radiative and non-radiative (nr) decay channels: $\tau_N^{-1} = k_N + k_+ + k_N^{nr}$ and $\tau_T^{-1} = k_T + k_- + k_T^{nr}$.

The ratiometric fluorescence detection approach measures the ratio $R=I_N/I_T$ between the measured fluorescence intensities of the N* and T* bands. By definition, the intensity of the N* band (and similarly for the T* band) can be written:

$$I_N = k_N \int_0^\infty N^*(t) \, dt$$

with k_N the radiative decay rate. Hence, instead of resolving the set of differential equations (as done e.g. in Shynhar et al., J. Phys. Chem. A, 2003, 107, 9522-9529), we may integrate both equations, which yields:

$$N_0 = \frac{I_N}{\tau_N k_N} - k_- \frac{I_T}{k_T}$$
$$0 = k_+ \frac{I_N}{k_N} - \frac{I_T}{\tau_T k_T}$$

with N_0 , the population initially promoted to N* upon light absorption from N. The second line directly gives the ratio R between the total emission intensities in both bands:

$$R = \frac{I_N}{I_T} = \frac{k_N}{k_T} \frac{1}{\tau_T k_+}$$

Using in addition the first line allows us to conclude:

$$I_N = \frac{N_0 k_N \tau_N}{1 - k_+ k_- \tau_N \tau_T}$$
(Eq. 1)

$$I_T = \frac{N_0 k_+ k_T \tau_N \tau_T}{1 - k_+ k_- \tau_N \tau_T}$$
(Eq. 2)

Supplementary Note 2: Case study about the ratiometric detection of two sub-populations *a* and *b* characterized by distinct ESIPT rates

As described in the main text we may introduce:

$$R = \frac{I_{Na} + I_{Nb}}{I_{Ta} + I_{Tb}}$$

In the simplistic case of two subpopulations differing only by their ESIPT rates k_+ (*i.e.* $k_+^a \neq k_+^b$), with both ESIPT reactions occurring irreversibly ($k_-\sim 0$) and rapidly ($k_+\tau_N \sim 1$ for each subpopulation), then Eq. 1 and 2 above can be written:

$$I_{Na} \sim \alpha N_0 k_N \tau_{Na} \sim \alpha N_0 k_N / k_+^a, \quad I_{Nb} \sim (1-\alpha) N_0 k_N \tau_{Nb} \sim (1-\alpha) N_0 k_N / k_+^b$$
$$I_{Ta} \sim \alpha N_0 k_T \tau_T, \quad I_{Tb} \sim (1-\alpha) N_0 k_T \tau_T$$

with α and $(1 - \alpha)$ the relative proportions of species a and b, respectively.

And finally:

$$R \sim \alpha \; \frac{k_N}{k_T} \frac{1}{\tau_T \; k_+^a} + (1 - \alpha) \; \frac{k_N}{k_T} \; \frac{1}{\tau_T \; k_+^b}$$