Electronic Supplementary Information:

Anisotropic Lattice Softening Near the Structural Phase Transition in the Thermosalient Crystal 1,2,4,5-tetrabromobenzene

Boris A. Zakharov,^{ab+} Adam A.L. Michalchuk,^{bcd} Carole A. Morrison^c and Elena V. Boldyreva^{ab}

1. X-RAY DIFFRACTION EXPERIMENTS WITH MULTIPLE CRYSTALS

A remarkable feature of the thermosalient effect in 1,2,4,5-tetrabromobenzene was observed for a crystals mounted with oil onto a micro-mesh sample holder. This is that the mechanical response (crystal disappearing from holder) and the structural phase transition (the change in the crystal structure) were well separated in time at a fixed temperature, or in temperature on continuous heating. The phase transition clearly preceded crystal jumping from the holder, and loss of the crystal from the holder was not observed at the moment of the phase transition. Similar behaviour was observed for ferrocene: the crystal disintegration and the phase transition on cooling were shown to be two separate phenomena. For ferrocene, disintegration could not be repeated even after powder had been heated to ambient temperature (J. S. Bodenheimer and W. Low, Phys. Lett. A, 1971, 36, 253–254). A crystal "locked" in a capillary with oil for a diffraction experiment cannot jump. A crystal in a holder does jump, but it is only very rarely that after this jump at least a part of the crystal still remains on the holder, accessible for structure determination. The changes in lattice parameters of all tested crystals of 1,2,4,5-tetrabromobenzene vs. temperature are plotted in Figure S1. In our experiments crystal disappearing from crystal holder occurred only for one crystal. Apart from that presented in the main text, another possible explanation of crystal disappearing from a MiTiGen holder during a single-crystal X-ray diffraction experiment after the phase transition has been observed is sublimation. We cannot exclude this option completely, since we did not see the moments when the crystals disappeared. However, we note that this explanation is unlikely. No notable and consistent decay in the reflection intensities was observed at a fixed temperature, before a crystal disappeared. Besides, it seems unlikely that a crystal would completely disappear because of sublimation at 313 K when covered by oil, but not even at 343 K when placed inside an open capillary.

Figure S1. Dependence of the 1,2,4,5-tetrabromobenzene lattice parameters on temperature (experiment with crystal fixed in capillary – squares, experiment with crystals fixed at micro-mesh sample holder – circles and triangles, respectively)

2. CONVERGENCE TESTING FOR DFT CALCULATIONS

To ensure accuracy of the theoretical model, it is imperative to ensure sufficient sampling of the Brillouin zone is used. To test convergence of *k*-space, single point energy calculations were performed using a cut-off energy of 900 eV with norm-conserving pseudopotentials, Figure S2. It has been previously suggested that a spacing of 0.08 Å⁻¹ is generally acceptable for structural optimisation (J. Binns, M. R. Healy, S. Parsons and C. A. Morrison, *Acta Cryst. B.*, 2014, **70**, 259–267.) as is seen here with a ΔE /ion of < 1meV at this spacing. However, to ensure accurate phonon calculations, notably tighter convergence is required. For convergence testing of the kinetic energy cut-off, the converged *k*-point grid (522) was used, Figure S2.

Figure S2: Convergence testing for DFT calculations of TBB. (Left) convergence of *k*-point sampling grid, with MP grids labelled, and (Right) convergence of kinetic energy cut-off.

3. SYMMETRY ADAPTED PERTURBATION THEORY CALCULATIONS

Within symmetry adapted perturbation theory (SAPT), the total interaction energy can be written as

$$E_{lE}^{SAPT} = \sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (E_{pol}^{(nkl)} + E_{exch}^{(nkl)})$$

Here, the total interaction energy (E_{IE}) is given by expansion of the polarisation term (typically attractive), E_{pol} , and the exchange term (typically repulsive), E_{exch} . The latter is due to the antisymmetrization of the wavefunction. These terms are expanded across the order of intermolecular potential, *n*, and intramonomer electron correlation, *k* and *l*. The SAPTO method treats each interacting monomer within the Hartree-Fock level and adds explicit dispersion terms, which result from second order perturbation theory. This is added to the electrostatic, exchange and induction terms. SAPTO can therefore be thought of as largely analogous to an MP2-type calculation, with interaction energy for SAPTO given as,

$$E_{IE}^{SAPT0} = E_{IE}^{HF} + \left[E_{disp}^{(20)} + E_{exch-disp}^{(20)} \right]_{disp}$$

= $\left[E_{elst}^{(10)} \right]_{elst} + \left[E_{exch}^{(10)} \right]_{exch} + \left[E_{ind,r}^{(20)} + E_{exch-ind,r}^{(20)} + \delta E_{HF}^{(2)} \right]_{ind} + \left[E_{disp}^{(20)} + E_{exch-disp}^{(20)} \right]_{disp}$

Thus, the energy is broken into traditional electrostatic (E_{elst}), exchange (E_{exch}), inductive (E_{ind}) and dispersion (E_{disp}) interaction energies. In the above, $E^{(v,w)}$ represent the interaction energy at perturbation level v=n, with w=k+l. A complete description can be found elsewhere (Parker *et al* JCP, 140, 2014). Within the sSAPT method, employed here, the exchange term is scaled based on empirically-fitted scaling coefficients (Lao and Herbert, JPC A 116, 3042, 2012), and has been shown to provide excellent results for calculated energies (Parker *et al* JCP 140, 2014).

In the present manuscript, three dimers were extracted from the unit cell, corresponding to the π - π stacking interaction (dimer 1-2, Figure 2 in main text), and two unique Br...Br / Br...H contacts (dimers 2-3 and 3-4, Figure 2 in main text). The complete energy decomposition using sSAPTO /jun-cc-pVDZ is give in Tables S1-S3 for dimer 1-2, dimer 2-3 and dimer 3-4, respectively.

Table S1: sSAPT0/jun-cc-pVDZ energy decomposition for dimer 1-2, the π - π stacking interaction, as a function of temperature. The electrostatic (E_{elst}), exchange (E_{exch}), inductive (E_{ind}) and dispersion (E_{disp}). The total energy is also given, E^{SSAPT0}_{IE} . All energies are given in KJ.mol⁻¹.

Temperature /K	E _{elst}	E _{exch}	E _{ind}	E _{disp}	Essario
273	-16.17902211	45.38233539	-2.94333021	-59.27396488	-33.01398181
283	-15.78413961	44.80530302	-2.89705884	-58.82474139	-32.70063682
293	-15.64964792	44.02434433	-2.81818260	-58.50874249	-32.95222868
303	-15.48781490	43.42606161	-2.74388912	-58.18021998	-32.98586239

313	-15.55514747	41.94265461	-2.41712918	-57.79717036	-33.82679240
323	-15.43947264	41.28760973	-2.33558576	-57.42300806	-33.91045673
333	-15.15147261	40.62890226	-2.27528535	-57.14658426	-33.94443995
343	-14.89507049	40.09888829	-2.25001694	-56.69442199	-33.74062113

Table S2: sSAPT0/jun-cc-pVDZ energy decomposition for dimer 2-3, the first Br...Br/Br...H interaction, as a function of temperature. The electrostatic (E_{elst}), exchange (E_{exch}), inductive (E_{ind}) and dispersion (E_{disp}). The total energy is also given, $\frac{E^{SSAPT0}}{IE}$ All energies are given in KJ.mol⁻¹.

Temperature /K	E _{elst}	E _{exch}	E _{ind}	E _{disp}	E
273	-12.94024417	23.17963726	-2.88224215	-16.85778484	-9.50063391
283	-12.98470084	23.10938772	-2.89938833	-16.83368975	-9.60839119
293	-12.88876523	22.98678464	-2.86690475	-16.81940215	-9.58828750
303	-12.87063838	22.91024784	-2.85500096	-16.80801048	-9.62340198
313	-14.13762637	24.73168880	-3.03121461	-17.55000517	-9.98715736
323	-14.01981239	24.41889095	-3.00371072	-17.47733997	-10.08197213
333	-13.86306614	24.08190860	-2.95693611	-17.36565312	-10.10374677
343	-13.74454978	23.75809006	-2.93813464	-17.24191621	-10.16651057

Table S3: sSAPT0/jun-cc-pVDZ energy decomposition for dimer 3-4, the second Br...Br/Br...H interaction, as a function of temperature. The electrostatic (E_{elst}), exchange (E_{exch}), inductive (E_{ind}) and dispersion (E_{disp}). The total energy is also given, E^{SSAPT0}_{IE} All energies are given in KJ.mol⁻¹.

Temperature /K	E _{elst}	E _{exch}	E _{ind}	E _{disp}	E
273	-12.94025043	23.17964092	-2.88211979	-16.85778758	-9.50051687
283	-12.98471361	23.10941667	-2.89944943	-16.83369722	-9.60844359
293	-12.88877111	22.98679573	-2.86688964	-16.81940511	-9.58827013
303	-12.87061847	22.91024779	-2.85502772	-16.80801041	-9.62340882
313	-14.13762279	24.73167049	-3.03137080	-17.55000027	-9.98732336
323	-14.01978386	24.41884256	-3.00363605	-17.47732597	-10.08190332
333	-13.86307033	24.08191297	-2.95699485	-17.36565318	-10.10380538
343	-13.74456654	23.75813126	-2.93815364	-17.24193156	-10.16652048

4. LOBSTER COHP CALCULATIONS

The crystal orbital Hamiltonian population (COHP) offers a means to weight the electronic density of states by the overlap Hamiltonian element. Thus, it offers a measure of the nature and strength of the overlap population. When projected over atomic contributions (pCOHP), this method allows assessment of the covalent character shared between select atom pairs. By integrating the pCOHP up to the Fermi energy (eF), a measure of the covalent bond strength can therefore be obtained. This has been done for all intermolecular Br...Br and Br...H contacts at points immediately before and after the phase transition, Table S4.

	T = 303 K		Т = 313 К			
Contact	Distance /Å	-ICOHP (eF) /eV	Contact	Distance /Å	-ICOHP (eF) /eV	
Br1Br6	3.76	0.06491	Br1Br6	3.73	0.06426	
Br1Br8	3.62	0.08413	Br1Br8	3.69	0.07375	
Br2Br5	3.76	0.06515	Br2Br5	3.73	0.06417	
Br2Br7	3.62	0.08388	Br2Br7	3.69	0.07383	
Br3Br6	3.62	0.08433	Br3Br6	3.69	0.07424	
Br3Br8	3.76	0.06494	Br3Br8	3.73	0.06419	
Br4Br5	3.62	0.08408	Br4Br5	3.69	0.07433	
Br4Br7	3.76	0.06518	Br4Br7	3.73	0.06411	
Br5Br7	4.48	0.01261	Br5Br7	4.18	0.02004	
Br6Br8	4.48	0.01265	Br6Br8	4.18	0.02011	
Br1H22	3.29	0.01305	Br1H22	3.34	0.02091	
Br2H21	3.29	0.01334	Br2H21	3.34	0.02090	
Br3H24	3.29	0.01298	Br3H24	3.34	0.02142	
Br4H23	3.29	0.01327	Br4H23	3.34	0.02142	
Br5H22	3.14	0.03653	Br5H22	3.29	0.02267	
Br6H21	3.14	0.03608	Br6H21	3.29	0.02276	
Br7H24	3.14	0.03637	Br7H24	3.29	0.02190	
Br8H23	3.14	0.03592	Br8H23	3.29	0.02199	

Table S4: COHP analysis of Br...Br and Br...H interactions for TBB before and after the phase transition. The integrated pCOHP values are given at the Fermi energy (eF).

5. Comparison of Experimental and Theoretical Vibrational Frequencies

To ensure accuracy of the theoretical model used in this work, calculated Raman frequencies were compared to newly collected single crystal Raman spectra, Figure S3, as well as literature Raman data (K. White and Eckhardt, J. Chem. Phys., 1998, **109**, 208-213) Excellent agreement is found between both experimental spectra and the calculated frequencies, Table S5. Thus, it is apparent that the DFT model employed here represents an accurate description of the Brillouin zone-centre.

Figure S3: Raman spectrum of a single crystal of θ -TBB under ambient conditions.

Table S5: Comparison of experimental Raman frequencies with calculated Raman frequencies. Note that only modes calculated as being Raman active are given Here. Literature Raman data taken from [White and Eckhardt, J Chem Phys 109, 1, 1998].

Experi	Experimental		Assignment
Literature	This work		
		18.13, 19.54, 35.59	TBB external rocking
	42	42.25	TBB external rocking
	45.5	43.29, 47.05	TBB external rocking
	54		
	87		
125	126.4	123.99, 126.90	Br in-plane wag
203	203.6	196.73, 199.77,	TBB ring rocking
208	209	203.82, 204.21	Ring deformation
220	221	221.21, 221.54	C-Br Stretch
	234		
	256		
317	317	313.75, 314.21	TBB ring rocking
	403		
453	454	455.70, 457.32	TBB ring twisting
657	659	653.00. 655.97,	Ring deformation
667	669	659.19	Ring deformation
		777.55	Ring deformation
800	802	790.19	Ring deformation
866	866, 868	849.45, 850.52	H wag, ring deformation

In contrast to the present work, earlier reports of the Raman spectra of TBB under ambient conditions do not discuss the presence of a Raman active band at *ca* 100 cm⁻¹, or at *ca* 400 cm⁻¹. Indeed, calculations based on the harmonic approximation also suggests that these bands should not be present. The presence of these bands in the spectrum presented in this work can therefore be attributed to overtone modes.

Given the excellent agreement between experimental and calculated Raman spectra, the vibrational frequencies across all temperature points were calculated, Table S6.

Table S6: Calculated zone-centre vibrational frequencies for TBB at a variety of temperatures. All calculations based on experimentally determined crystal structures at the corresponding temperature. The corresponding symmetry species is given for each frequency (point group C2h)

		273 K		283 K		293 К		303 K	
No.	Frequency	Symmetry	Frequency	Symmetry	Frequency	Symmetry	Frequency	Symmetry	
1	-0.030061	A _u	-0.030088	A _u	-0.030239	A _u	-0.030439	A _u	
2	-0.024501	B _u	-0.024590	Bu	-0.024631	B _u	-0.024563	B _u	
3	-0.017590	B _u	-0.017609	Bu	-0.017627	B _u	-0.017616	B _u	
4	18.133372	B _g	17.549431	B _g	17.682077	Bg	18.615016	Bg	
5	19.540091	Ag	18.787559	Ag	18.540616	Ag	18.959618	Ag	
6	30.522831	A _u	29.581547	A _u	30.117160	A _u	32.116470	A _u	
7	35.586655	Ag	35.567965	Ag	35.425034	Ag	35.745394	Ag	
8	42.250685	Bg	42.024790	Bg	41.828934	Bg	41.520602	Ag	
9	43.290928	Ag	42.587388	Ag	41.864921	Ag	41.708368	Bg	
10	44.647460	A _u	44.364859	A _u	42.946964	A _u	44.064299	A _u	
11	47.055407	Bg	46.588669	Bg	45.589936	Bg	45.164879	Bg	
12	52.229905	A _u	51.803833	A _u	51.375750	A _u	51.390016	A _u	
13	52.624787	B _u	52.177712	B _u	52.382373	Bu	52.920084	B _u	
14	61.116719	Bu	59.810296	B _u	59.146497	Bu	58.838457	B _u	
15	110.518449	A _u	109.697737	A _u	109.602561	A _u	110.556675	A _u	
16	112.444720	B _u	111.906967	B _u	111.755910	B _u	112.359933	B _u	
17	123.987770	Bg	123.882690	Bg	123.773765	Bg	123.699191	Bg	
18	126.902117	Ag	126.753075	Ag	126.604584	Ag	126.487730	Ag	
19	131.839536	A _u	131.670793	A _u	131.556582	A _u	131.664939	A _u	
20	134.351293	Bu	134.154707	B _u	134.292480	B _u	134.706092	B _u	
21	143.060087	B _u	142.746219	B _u	142.534961	B _u	142.708450	B _u	
22	147.111567	A _u	146.496840	A _u	146.271072	A _u	146.528838	A _u	
23	196.741936	Bg	196.528470	Bg	196.595228	Bg	197.100594	Bg	
24	199.771987	Ag	199.530719	Ag	199.704210	Ag	200.220908	Ag	
25	203.818325	Ag	203.719280	Ag	203.694378	Ag	203.860728	Ag	
26	204.211053	Bg	204.061438	Bg	204.151191	Bg	204.377839	Bg	
27	221.207521	Bg	221.164006	Bg	221.147965	Bg	221.137400	Bg	
28	221.540814	Ag	221.527723	Ag	221.506440	Ag	221.504831	Ag	
29	313.751440	Ag	313.139385	Ag	313.049180	Ag	313.707374	Ag	
30	314.212827	Bg	313.594756	Bg	313.498929	Bg	314.154112	Bg	
31	384.334707	Bu	383.699459	Bu	383.476684	Bu	384.002929	Bu	
32	384.711855	A _u	384.503051	A _u	384.192995	A _u	384.906856	A _u	
33	425.171334	A _u	425.157787	A _u	425.379137	A _u	425.793863	B _u	
34	425.300307	Bu	425.304575	Bu	425.434771	Bu	425.856678	A _u	
35	455.704660	Bg	454.983867	Bg	454.405760	Bg	455.174505	Bg	

36	457.315064	Ag	456.600054	Ag	456.009141	Ag	456.768681	Ag
37	519.170984	A _u	519.307684	A _u	519.294246	A _u	519.246290	A _u
38	519.995396	B _u	519.970411	B _u	519.818587	B _u	519.775977	B _u
39	566.545075	A _u	566.252942	A _u	566.246034	A _u	566.665379	B _u
40	566.559235	B _u	566.269081	B _u	566.255631	B _u	566.667705	A _u
41	652.995796	Ag	652.954254	Ag	652.749645	Ag	652.673584	Ag
42	655.973380	Bg	655.982833	Bg	655.737237	Bg	655.533155	Bg
43	657.884112	Ag	657.751755	Ag	657.771686	Ag	658.038321	Ag
44	659.194513	Bg	659.046483	Bg	659.106994	Bg	659.506721	Bg
45	777.543635	Ag	777.330305	Ag	777.849685	Ag	778.599982	Ag
46	790.055395	Bg	789.821864	Bg	790.292859	Bg	790.985133	Bg
47	849.459598	Bg	849.594630	Bg	849.794688	Bg	850.026898	Bg
48	850.521976	Ag	850.648705	Ag	850.832917	Ag	851.050515	Ag
49	869.141439	A _u	869.273617	A _u	869.446382	A _u	869.616949	A _u
50	869.258037	B _u	869.475583	B _u	869.610432	B _u	869.688571	B _u
51	995.981734	A _u	995.850289	A _u	996.179092	A _u	996.670046	A _u
52	997.195733	B _u	996.999644	Bu	997.227534	B _u	997.590382	B _u
53	1098.869937	Ag	1098.758571	Ag	1098.944810	Ag	1099.197427	Ag
54	1099.965905	Bg	1099.876960	Bg	1100.060305	Bg	1100.311798	Bg
55	1105.807071	A _u	1105.501864	A _u	1105.523809	A _u	1105.602088	A _u
56	1106.197003	B _u	1105.933828	B _u	1105.797084	B _u	1105.763894	B _u
57	1247.037052	Ag	1246.792624	Ag	1246.480314	Ag	1246.260687	Ag
58	1250.276655	Bg	1250.010230	Bg	1249.679293	Bg	1249.458586	Bg
59	1275.821954	A _u	1275.632677	A _u	1275.160879	A _u	1275.426377	A _u
60	1275.910091	B _u	1275.782582	Bu	1275.364795	B _u	1275.647557	B _u
61	1281.613611	A _u	1281.273048	A _u	1280.943330	A _u	1280.683352	A _u
62	1281.984530	Bu	1281.605977	B _u	1281.275747	B _u	1281.043881	B _u
63	1412.638187	A _u	1412.468761	A _u	1412.389341	A _u	1412.398788	A _u
64	1413.971087	Bu	1413.726493	Bu	1413.641790	B _u	1413.580532	B _u
65	1492.534216	Ag	1492.101245	Ag	1491.786689	Ag	1492.122614	Ag
66	1493.103565	Bg	1492.668481	Bg	1492.358839	Bg	1492.677373	Bg
67	1514.665479	Ag	1514.546125	Ag	1514.354706	Ag	1514.187741	Ag
68	1526.185947	B _g	1526.054183	Bg	1525.833163	Bg	1525.651779	Bg
69	3106.761987	A _u	3106.481733	A _u	3106.034353	A _u	105.611022	A _u
70	3107.058810	B _u	3106.779221	Bu	3106.383671	B _u	105.909621	B _u
71	3108.330122	Ag	3108.016382	Ag	3107.583594	Ag	107.165835	Ag
72	3109.135823	Bg	3108.810925	Bg	3108.364098	Bg	3107.932600	Bg

	313 K		32	3 K	333 K		343 К	
No.	Frequency	Symmetry	Frequency	Symmetry	Frequency	Symmetry	Frequency	Symmetry
1	-0.029517	B _u	-0.029036	B _u	-0.029736	B _u	-0.030407	B _u
2	-0.017572	A _u	-0.017581	A _u	-0.017546	A _u	-0.017521	A _u
3	0.060192	Bu	0.071406	Bu	0.079043	Bu	0.076759	B _u
4	16.804768	Ag	15.936078	Ag	15.230891	Ag	15.249326	Ag
5	21.024886	Bg	21.483357	Bg	21.714037	Bg	22.137112	Bg
6	32.667883	A _u	32.573506	A _u	31.554755	A _u	30.905675	A _u
7	35.778551	Bg	34.244233	Bg	33.459799	Bg	32.989364	Bg
8	36.718012	Ag	36.137521	Ag	35.356180	Ag	34.837655	Ag
9	38.159122	Ag	38.263060	Ag	38.082080	Ag	38.009648	Ag
10	43.296761	Bg	42.849476	Bg	42.458830	Bg	42.284857	Bg
11	43.782009	Bu	45.120047	B _u	44.576709	B _u	44.380616	B _u
12	45.971322	A _u	45.560018	A _u	45.166900	A _u	44.838301	A _u
13	51.227139	A _u	50.680247	A _u	50.190193	A _u	49.826384	A _u
14	51.740520	Bu	51.627229	B _u	51.301662	B _u	51.124024	B _u
15	115.409492	A _u	115.026259	A _u	113.940135	A _u	113.332903	A _u
16	116.449751	B _u	115.702923	Bu	114.725715	Bu	114.216710	B _u
17	123.425832	Bg	123.751438	Bg	123.524938	Bg	123.419254	Bg
18	125.793572	Ag	125.653941	Ag	125.487762	Ag	125.449889	Ag
19	132.789565	A _u	132.792544	A _u	132.638123	A _u	132.538750	A _u
20	134.172739	B _u	133.896209	B _u	133.673878	B _u	133.550543	B _u
21	142.491397	A _u	142.275795	A _u	141.836837	A _u	141.568781	A _u
22	142.671192	Bu	142.718733	B _u	142.477562	B _u	142.333020	B _u
23	199.666000	Bg	198.506942	Bg	196.954715	Bg	195.949511	Bg
24	201.425294	Ag	200.622958	Ag	199.305732	Ag	198.340382	Ag
25	204.445801	Ag	204.198375	Ag	203.853903	Ag	203.727096	Ag
26	204.743503	Bg	204.704575	Bg	204.525151	Bg	204.455713	Bg
27	220.929892	Bg	220.857126	Bg	220.803868	Bg	220.785808	Bg
28	221.563210	Ag	221.522167	Ag	221.429014	Ag	221.400329	Ag
29	317.756213	Ag	318.245361	Ag	318.672717	Ag	319.184992	Ag
30	318.009124	Bg	318.529669	Bg	319.021596	Bg	319.556833	Bg
31	382.679206	Bu	383.362332	Bu	383.261008	Bu	383.014576	B _u
32	384.329723	A _u	384.369688	A _u	384.190871	A _u	383.912939	A _u
33	428.715375	Bu	428.619843	Bu	428.357503	Bu	428.205784	B _u
34	429.127105	A _u	429.026746	A _u	428.728004	A _u	428.564974	A _u

35	453.401692	Bg	453.639196	Bg	453.714249	Bg	453.621611	Bg
36	454.846683	Ag	455.187082	Ag	455.260899	Ag	455.157165	Ag
37	519.291676	Bu	519.165449	A _u	518.936216	A _u	518.796573	A _u
38	519.332909	A _u	519.312128	B _u	519.159519	B _u	519.068870	Bu
39	568.612128	B _u	568.908115	B _u	569.179934	B _u	569.445811	B _u
40	568.677467	A _u	568.965679	A _u	569.237817	A _u	569.513548	A _u
41	651.883284	Ag	651.700427	Ag	651.158800	Ag	650.725259	Ag
42	654.835360	Bg	654.649719	Bg	654.108144	Bg	653.674469	Bg
43	660.057786	Ag	660.168412	Ag	660.203151	Ag	660.310304	Ag
44	661.464397	Bg	661.568034	Bg	661.574017	Bg	661.662128	Bg
45	778.441868	Ag	778.253916	Ag	778.058792	Ag	777.967948	Ag
46	790.440411	Bg	790.284969	Bg	790.048284	Bg	789.932935	Bg
47	851.680843	Bg	851.612710	Bg	851.434138	Bg	851.322207	Bg
48	852.400119	Ag	852.297731	Ag	852.091972	Ag	851.956979	Ag
49	871.023257	A _u	870.955618	A _u	870.788271	A _u	870.670928	A _u
50	871.322784	B _u	871.316001	B _u	871.238345	B _u	871.141889	B _u
51	996.997810	A _u	996.846021	A _u	996.619317	A _u	996.485687	A _u
52	997.658647	B _u	997.418211	B _u	997.105655	B _u	996.894076	B _u
53	1098.466422	Ag	1098.252008	Ag	1097.902330	Ag	1097.738963	Ag
54	1099.578734	Bg	1099.127358	Bg	1098.841404	Bg	1098.694245	Bg
55	1102.558188	A _u	1102.328416	A _u	1102.139942	A _u	1102.002878	A _u
56	1104.174570	B _u	1104.037634	B _u	1103.916463	B _u	1103.851929	B _u
57	1243.387747	Ag	1243.304338	Ag	1243.212881	Ag	1243.135349	Ag
58	1246.524769	Bg	1246.419709	Bg	1246.294374	Bg	1246.189624	Bg
59	1275.953037	A _u	1276.039196	A _u	1275.961028	A _u	1275.946107	A _u
60	1276.969349	B _u	1277.040624	B _u	1277.003208	B _u	1277.053365	B _u
61	1277.887328	A _u	1277.833129	A _u	1277.619081	A _u	1277.458670	A _u
62	1278.701965	B _u	1278.637711	B _u	1278.389174	B _u	1278.169378	B _u
63	1410.902781	A _u	1410.754812	A _u	1410.583745	A _u	1410.489430	A _u
64	1413.269139	B _u	1413.086776	B _u	1412.905413	B _u	1412.821895	B _u
65	1491.335828	Ag	1491.431204	Ag	1491.368989	Ag	1491.336790	Ag
66	1491.681437	Bg	1491.826781	Bg	1491.738781	Bg	1491.693942	B _g
67	1512.987625	Ag	1512.896711	Ag	1512.709186	Ag	1512.615246	Ag
68	1524.182781	Bg	1524.067906	Bg	1523.827807	Bg	1523.711420	Bg
69	3103.099881	A _u	3103.014470	A _u	3102.935091	A _u	3102.919093	A _u
70	3103.420390	B _u	3103.332830	B _u	3103.249753	B _u	3103.236360	B _u
71	3104.449916	Ag	3104.368725	Ag	3104.285966	Ag	3104.263503	Ag

72	3105.138397	Bg	3105.040722	Bg	3104.940348	Bg	3104.907742	Bg
----	-------------	----	-------------	----	-------------	----	-------------	----

The phase transition is met with marked shift in the low frequency vibrational structure. However, there is little change associated with the eigenvectors in each polymorph, with 8 of the 11 low frequency modes mapping directly from one phase to other (albeit at notably different frequencies), Table S7.

303 K /cm ⁻¹	Symmetry 303 K	313 K /cm ⁻¹	Symmetry 313 K
18.62	Ag	16.80	Ag
18.96	Bg	21.02	Bg
32.12	Au	32.67	Au
35.75	Ag		
41.52	Ag	36.72	Ag
41.71	Bg	35.78	Bg
44.06	Au		
		38.16	Ag
		43.30	Bg
45.16	Bg		
51.39	Au	45.97	Au
		51.23	Au
52.92	Bu	51.74	Bu
58.85	Bu	43.78	Bu

Table S7: Mapping of low frequency vibrational modes from β -TBB (303 K) to γ -TBB (313 K). Where direct mapping does not occur, a cell is marked '- -'. The symmetry species (point group C2h) are listed.

7. TEMPERATURE VARIATION OF VIBRATIONAL FREQUENCIES IN β - AND γ -TBB

The vibrational response to heating of θ -TBB is complex. Figure S4. All modes are seen to initially soften between 273 K and 283 K, in agreement with discontinuities in pairwise interaction energies. Very many of these modes, however, continue to soften only until 293 K, before suddenly hardening by 303 K. Only three modes 9, 11 and 14, are seen to soften monotonically towards the phase transition.

Figure S4: Variation in low frequency β -TBB zone-centre vibrational frequencies as a function of temperature. Modes are labelled according to mode number according to Table S6.

On further heating beyond the phase transition, the vibrational frequencies display a more typical response to thermal expansion. That is, nearly all modes are found to soften with increasing temperature, Figures S5.

Figure S5: Variation in low frequency γ -TBB zone-centre vibrational frequencies as a function of temperature. Modes are labelled according to mode number according to Table S6.

8. Eigenvectors of Notable Normal Modes

While the majority of low frequency modes are seen to first soften, before hardening at the phase transition temperature, Figure S4, this effect is largest for the Au mode [32.12 cm⁻¹ T=303 K] that corresponds to translation of π -stacked columns, Figure S6

Fig S6: The normal mode in β -TBB that displays largest hardening towards the phase transition. Eigenvectors are shown with arrows.

Only three vibrational modes are found to monotonically soften towards the phase transition on heating, Figure S4. These correspond to two rocking modes, and a translation, Figure S7.

Figure S7: (A) B_g soft mode 43.29 cm⁻¹ at T=273 K, (B) B_g soft mode 47.05 cm⁻¹ at T=273 K, and (C) B_u soft mode at 61.12 cm⁻¹ at T=273 K.

The soft mode with large translational component along the crystallographic *b*-axis, Figure S7c, has a net displacement vector associated with it, Figure S8.

Figure S8: Net displacement direction yellow arrow of the Bu soft mode in the β -TBB lattice.

Across the phase transition, only three modes are found not to be conserved, Figure S9. While the symmetry of these modes is obviously conserved, the main polarisation of their eigenvectors shifts drastically, and is likely responsible for immense build-up of stress at domain interfaces.

Figure S9: Eigenvectors of the non-mapped normal coordinates across the TBB phase transition. Mode symmetry and associated vibrational frequency are shown. Arrows indicate direction of atomic displacement.