Electronic Supplementary Information

The Kinetics and Mechanism of Oxidation of Reduced Phosphovanadomolybdates by Molecular Oxygen: Theory and Experiment in Concert Alexander M. Khenkin, Irena Efremenko, Jan M. L. Martin, and Ronny Neumann* Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100

Table S1. The volumetric determination of dioxygen consumption for $\mathbf{1}_{red1e}$, and $\mathbf{1}_{red2e}$.

Polyoxometalate	[O ₂], μmol		
1 _{red2e}	50±5		
1 _{red1e}	25±2		

Conditions: $[\mathbf{1}_{red}] = 100 \ \mu mol$ in 2 mL of acetonitrile under air, T = 25 °C. Reactions were carried out in a magnetically stirred 10 mL volumetric flask kept at 25° ±0.2 °C with an oil bath (room temperature was 24-25 °C) connected to a gas burette for measuring the volume of consumed oxygen. The combined head space above the reaction solution was ~10 mL. The experimental error was ~ 10%.

Table S2. Outer-sphere reactions of O_2 and its reduced species with $H_6PV_2Mo_{10}O_{40}$ and with $H_7PV_2Mo_{10}O_{40}$ in gas phase and in acetonitrile at 298 K

	Gas phase				Acetonitrile			
	O ₂	HO ₂	H_2O_2	OHª	O ₂	HO ₂	H_2O_2	OHª
$H_6 PV_2 Mo_{10}O_{40}$								
PT	167.2	117.3	121.7	129.0	69.6	28.2	31.7	28.7
ET	165.7	233.5	149.8	135.7	45.6	130.3	41.7	4.6
CPET	20.1	-11.4	-10.2 ^ª	-45.1	16.9	-10.3	-12.2 ^ª	-44.8
$H_7 PV_2 Mo_{10}O_{40}$								
PT	171.6	121.7	126.1	133.4	72.2	30.8	34.3	31.3
ET	162.7	230.5	146.8	132.7	42.5	127.2	38.6	1.5
CPET	17	-14.5	-13.3ª	-48.2	13.4	-13.8	-15.7 ^ª	-48.3

^a H_3O_2 dissociates to H_2O and OH.

Table S3. Calculated stability of Mo-O-V and V-O-V reactive sites in acetonitrile at 298 K with respect to the corresponding intact Keggin structures. See Figure S9 for some typical defect structures with H_2O .

	$H_5PV_2Mo_{10}O_{40}$	$[H_5PV_2Mo_{10}O_{40}]^{1-}$	$H_6PV_2Mo_{10}O_{40}$	$[H_6PV_2Mo_{10}O_{40}]^{1-}$	$H_7PV_2Mo_{10}O_{40}$
V CUS (1,2)	20.54	19.58	22.28	17.64	18.64
Mo CUS (1,2)	16.50	17.85	16.93	13.75	15.32
Mo CUS (1,11)	16.25	14.10	14.35	15.08	15.54
V CUS (1,2)-H ₂ O	8.75	8.24	11.20	9.54	19.52
Mo CUS (1,2)-H ₂ O	7.59	9.73	7.42	5.01	14.27
Mo CUS (1,11)-H ₂ O	8.62	6.96	6.85	8.03	13.22

Table S4. Typical O₂ coordination modes to polyoxometalates isomers and their characteristics: ΔG_{298} , kcal/mol with respect to the intact polyoxometalate (defect structure), O-O and M-O bond distances (d, Å), O-O bond streching vibrational frequency (ν_{PO} , cm⁻¹) and Atomic Polar Tensor (APT) charges on oxygen atoms.

			$H_5PV_2Mo_{10}O_{40}$	$H_6PV_2Mo_{10}O_{40}$	$H_6PV_2Mo_{10}O_{40}$	$H_7PV_2Mo_{10}O_{40}$
		ΔG_{298}	21.1 (3.3)	22.7 (5.8)	2.1 (-11.7)	7.3 (-8.0)
η^2 -Mo-O ₂		d _{O-O}	1.312	1.311 1.442		1.440
		V ₀₋₀	1180.3 1195.0 925.5		928.8	
		d _{Mo-O}	2.148; 2.182 2.207; 2.189		1.986; 2.006	1.986; 2.011
	A	O-APT ch.	-0.217; -0.089	-0.217; -0.089 -0.207; -0.175 -0.366; -0.445		-0.349; -0.454
		ΔG_{298}	15.9 (-3.7)	17.4 (-4.9)	4.4 (-13.2)	11.7 (-6.9)
η^2 -V-O ₂		d_{O-O}	1.304	1.302	1.428	1.423
		$\nu_{\text{O-O}}$	1203.1	1212.0	951.1	954.2
		d_{V-O}	2.024; 2.018	2.017; 2.014	1.903; 1.927	1.917; 1.851
		O-APT ch.	-0.180; -0.056	-0.152; -0.067	-0.325; -0.439	-0.259; -0.270
		ΔG_{298}	17.8 (3.7)	20.0 (5.7)	2.0 (-13.0)	5.0 (-10.5)
n^2 -Mo-O ₂		d _{O-O}	1.312	1.307	1.445	1.443
(1.11)		$\nu_{\text{O-O}}$	1184.0	1191.0	929.6	950.7
(-//		d _{Mo-O}	2.148; 2.195	2.120; 2.201	1.972; 1.952	1.974; 1.948
	• • • • •	O-APT ch.	-0.206;-0.119	-0.177; -0.108	-0.358;-0.277	-0.344;-0.266
		ΔG_{298}	34.9	39.5	20.6	24.2
		d _{o-o}	1.327	1.328	1.450	1.436
Mo-00-V		$\nu_{\text{O-O}}$	1106.6	1105.1	822.9	849.0
		d _{Mo-O}	2.219; 2.054	2.189; 2.045	1.995; 1.846	2.011; 1.828
	• • •	O-APT ch.	-0.166; -0.241	-0.149; -0.253	-0.390; -0.416	-0.339; -0.417
		ΔG_{298}	39.5	41.8	30.6	26.4
		d _{O-O}	1.297	1.295	1.358	1.385
V-00-V		ν ₀₋₀	1200.8	1203.1	869.4	954.8
		d _{V-O}	1.992; 2.403	1.986; 2.416	1.871; 1.858	1.842; 1.870
		O-APT ch.	-0.099; -0.291	-0.083; -0.279	-0.341; -0.360	-0.423; -0.316
		ΔG_{298}	22.6	27.5	20.5	22.8
Ma 00		a ₀₋₀	1.321	1.320	1.323	1.321
1010-00		V ₀₋₀	1152.9	1154.5	1127.8	1150.4
			2.205	2.196		2.206
	<u>ا ا</u>	U-APT Ch.	-0.142; -0.357	-0.128; -0.347	-0.055; -0.348	-0.116; -0.339
		d	1 299	1 272	Not Iounu	Not Iouna
N 00		u ₀₋₀	1258 1	1263.8		
V-00		v ₀₋₀	1 972	1 9/13		
			0 3130 482	-0.016:-0.232		
			25 1	26.8	6.6	12.0
Мо-ООН V-ООН		d	1 33/	1 333	1 /137	1.450
		u ₀₋₀	1133 5	1135 7	899.7	888.2
		0-0V	2 315	2 311	1 983	1 985
		Ω _{M0-0}	-0.014:-0.406	-0.0250.368	-0 2090 482	-0 3530 323
		Δ	29 5	Not found	15 0	25 5
		do o	1 335	Not Iounu	1 382	1 378
		Vc-0	1113.8		1001 4	1017 3
		hu c	2 087		1 811	1 813
		Ο-ΔΡT ch	0 1170 454		-0 1450 298	-0.0960.228
	• •	J-AFT UI.	0.117,-0.454	1	0.145, 0.250	0.030, -0.278

Figure S1. Exemplery kinetic profiles for the oxidation of 0.25 mM $\mathbf{1}_{red1e}$ (left) and 0.27 mM $\mathbf{1}_{red2e}$ (right) after reduction with H₂ followed decrease of absorbance at 750 nm. [$\mathbf{1}_{red1e}$] = 0.25 mM, in acetonitrile saturated with air at 25 °C.

Figure S2. Dependence of initial rate $(-d[\mathbf{1}_{red}]_0/dt)$ of the oxidation of $[\mathbf{1}_{red1e}]$ (left) and $[\mathbf{1}_{red2e}]$ (right) in acetonitrile at the initial O₂ concentration of 2.4 mM at 25 °C.

Figure S3. Dependence of the initial rate $(-d[\mathbf{1}_{red1e}]_0/dt)$ of the oxidation of $[\mathbf{1}_{red1e}]$ (0.5 mM) (left) and dependence of the initial rate $(-d[\mathbf{1}_{red2e}]_0/dt)$ of the oxidation of $[\mathbf{1}_{red2e}]$ (0.5 mM) (right) in acetonitrile on the initial concentration of O_2 [O_2]₀ at 25 °C.

Figure S4. EPR Spectra. Left – 1 mM $H_5PV_2Mo_{10}O_{40}$ + 1 mM Ph_3P in acetonitrile at 25°C under Ar showing the contribution of V(IV) and $Ph_3P\bullet$ +. Right- g= 2.008 signal (zoom in) on the peak associable to $Ph_3P\bullet$ +.

Figure S5. Eyring plot of reoxidation of $\mathbf{1}_{red1e}$ (left) and $\mathbf{1}_{red2e}$ (right) after reduction with H_2 .[1] = 0.5 mM under air, in acetonitrile.

Figure S6. Eyring plot of reoxidation of $\mathbf{1}_{red1e}$ (left) and $\mathbf{1}_{red2e}$ (right) after reaction with Ph₃P at 70°C for 2 hours. [**1**] = 0.5 mM, [Ph3P] = 0.25 mM or 0.50 mM under air in acetonitrile.

Figure S7. – Optimized structures of outer-sphere complexes $H_6PV_2Mo_{10}O_{40}-O_2$ and their calculated energies (ΔG_{298} , kcal/mol) in acetonitrile

Figure S8. – Optimized structures of CUS species in Table 3

Figure S9. Wiberg bond indices for selected V-O and Mo-O bonds in (1,2) isomer of polyoxoanion $PV_2Mo_{10}O_{40}^{5-}$ (a), its protonated form $H_5PV_2Mo_{10}O_{40}$ (b) and in 1e- and 2e-reduced polyoxometalates $H_6PV_2Mo_{10}O_{40}$ (c) and $H_7PV_2Mo_{10}O_{40}$ (d).

Further explanation: Explicit consideration of protons is critically important for understanding of defect formation (a and b). One of the V-O-bonds, V_{53} -O₂₉, represents the weakest bridging bond in the H₅PV₂Mo₁₀O₄₀ (1,2) isomer. Breaking of this bond together with one of the other weak bonds, Mo₁₅-O₁₉ or V₁₄-O₃₅, leads to Mo or V CUS, respectively. Decreased stabilization of the surrounding framework permits breaking of the bond connecting the V₁₄ CUS atom with the central PO₄ tetrahedron and further destabilization of the Keggin structure: the V₁₄-O_i bond length in this structure is 2.54 Å, compared to 2.15 Å for the Mo₁₅-O_i distance in the structure with a Mo CUS, while the corresponding Wiberg bond orders are 0.14 and 0.30, respectively. That makes the V CUS species 4 kcal/mol higher in energy than its Mo CUS counterpart. Reduction of phosphovanadomolibdates strongly destabilizes Mo-O bonds making Mo CUS formation preferential, both kinetically and thermodynamically (c, d). Very similar results were found for the (1,11) isomer.

Figure S10. Spin density distribution in the (1,2) (a,c) and (1,11) (b,d) isomers of $\mathbf{1}_{red1e}$ (a,b) and $\mathbf{1}_{red2e}$ (c,d). Qualitative representation of the boundary orbitals of V⁵⁺ and Mo⁶⁺ in the octahedral crystal field of strong σ and π donor ligands and their relative energies (e).

V CUS (1,2) -H₂O

Mo CUS (1,2)-H₂O

Mo CUS (1,11)-H₂O

Figure S11. Typical defect structures with CUS on V and on Mo atoms in presence of water. Large purple spheres distinguish O-atom of coordinated water.

quintet M-OO

 $OSS \ \eta^2 \ Mo-O_2$

triplet Mo-OO

triplet η^2 Mo-O₂

Figure S12. Spin density distribution in $\mathbf{1}_{red2e}$ -O₂ complexes in different multiplicity states.