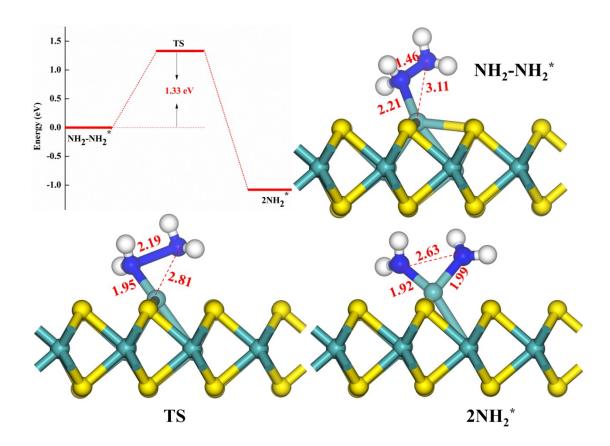
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

Supporting Information

Single Transition Metal Atom Embedded into MoS_2 Nanosheet as a Promising Catalyst for Electrochemical Ammonia Synthesis


Jia Zhao,† Jingxiang Zhao,*,† Qinghai Cai†

[†]College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

^{*} To whom correspondence should be addressed. Email: xjz hmily@163.com (JZ)

Table S1. The charge transfer (ΔQ , |e|) and magnetic moment transfer ($\Delta \mu$, μ_B) between the adsorbed N_2 species and TM-doped MoS₂ monolayer.

TM	ΔQ	Δμ
Sc	0.01	0.00
Ti	0.01	0.00
Cr	0.02	0.02
Mn	0.02	0.02
Rh	0.01	0.00
V	0.13	0.08
Fe	0.13	0.09
Co	0.11	0.08
Ni	0.10	0.07
Mo	0.08	0.06
Ru	0.09	0.06

Fig. S1. The computed dissociation pathway of $NH_2-NH_2^*$ to $2NH_2$ and the corresponding structures.

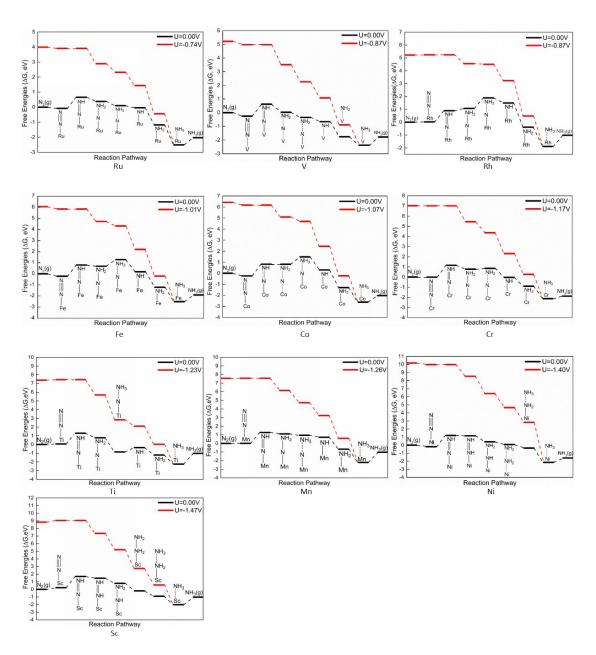


Fig. S2. The computed free energy profiles of NRR on various TM-doped MoS_2 nanosheets.