Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2018

## **Supporting Information**

## Asymmetric triphenylamine –phenothiazine based small molecules with varying terminal acceptor for solution processed bulk heterojunction organic solar cells

Srikanth Revoju,\*<sup>a</sup> Subhayan Biswas,<sup>b</sup> Bertil Eliasson,<sup>a</sup> and Ganesh D. Sharma\*<sup>b</sup>

<sup>a</sup>Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden

E-mail: srikanth.revoju@gmail.com

<sup>b</sup>Department of Physics, The LNMIIT (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India

E-mail: gdsharma273@gmail.com

## **Table of contents**

## Page

| DFT data: Relative energies, dipole moments, HOMO/LUMO energies                   | 2    |
|-----------------------------------------------------------------------------------|------|
| TD-DFT calculations of electronic excitation energies                             | 3    |
| Proposed $\pi$ - $\pi$ -stacking with antiparallel alignment of the dipole moment | 4    |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR of synthesized compounds               | 5-8  |
| HRMS of synthesized compounds                                                     | 9-12 |
| Current-voltage characteristics for as cast active layer OSC devices              | 13   |

| Compound;<br>Configuration or<br>conformation |   | DFT-optimized geometry | ΔΕ         | Dipole moment (D) |                 |                   |
|-----------------------------------------------|---|------------------------|------------|-------------------|-----------------|-------------------|
|                                               |   |                        | (kJ mol⁻¹) | In vacuo          | PCM<br>ε = 4.81 | HOMO/LUMO<br>(eV) |
| M1                                            | 1 |                        | 0          | 6.0               | 7.2             | -4.97/-2.42       |
|                                               | 2 |                        | 0.5        | 6.7               |                 | -4.95/-2.39       |
|                                               | 3 |                        | 14.9       | 7.1               |                 |                   |
|                                               | 4 |                        | 15.9       | 7.2               |                 |                   |
| M2                                            | 1 |                        | 0          | 10.2              | 11.7            | -5.08/-2.63       |
|                                               | 2 |                        | 1.4        | 10.4              |                 | -5.04/-2.60       |
| M3                                            | 1 |                        | 0          | 3.7               | 4.5             | -4.93/-2.39       |
|                                               | 2 |                        | 1.0        | 3.2               |                 | -5.04/-2.60       |

**Table S1**. B3LYP/6-31G(d) geometry-optimized configurations and conformations of **M1**, **M2** and **M3**, with energy differences, dipole moments, and HOMO/LUMO energy levels.<sup>a</sup>

<sup>a</sup> The DFT calculations were performed with an *N*-methyl group instead of the *N*-ethylhexyl group in the structures of **M1-M3**. The PCM calculations of dipole moments were done as single-point calculations on the lowest-energy structure of each compound **M1-M3**.

|    | Excitation | Transi                                                                     | tions                                                              | Wavelength<br>(nm) | Energy (eV) | Oscillator strength |
|----|------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------|-------------|---------------------|
| M1 | 1          | 163 ->165<br>164 ->165                                                     | -0.10348<br>0.69637                                                | 538.77             | 2.3012      | 0.2220              |
|    | 2          | 163 ->165<br>164 ->165                                                     | 0.68480<br>0.11277                                                 | 468.06             | 2.6489      | 0.2415              |
|    | 3          | 160 ->165<br>162 ->165<br>164 ->166<br>164 ->167                           | -0.15976<br>0.61739<br>0.23607<br>-0.12176                         | 372.15             | 3.3315      | 1.0371              |
|    | 4          | 160 ->165<br>162 ->165<br>163 ->165<br>163 ->166<br>164 ->166<br>164 ->167 | 0.11133<br>-0.22006<br>-0.10340<br>-0.14715<br>0.60873<br>-0.13780 | 354.04             | 3.5020      | 0.1778              |
| M2 | 1          | 139 ->140                                                                  | 0.70182                                                            | 564.56             | 2.1961      | 0.1442              |
|    | 2          | 138 ->140                                                                  | 0.68650                                                            | 473.27             | 2.6197      | 0.1880              |
|    | 3          | 136 ->140<br>137 ->140<br>139 ->141                                        | 0.11033<br>0.54738<br>-0.40167                                     | 360.45             | 3.4397      | 0.6775              |
|    | 4          | 136 ->140<br>137 ->140<br>139 ->141                                        | -0.10563<br>0.39790<br>0.54487                                     | 348.61             | 3.5566      | 0.2646              |
| М3 | 1          | 159 ->161<br>160 ->161                                                     | -0.11709<br>0.69434                                                | 546.01             | 2.2707      | 0.2715              |
|    | 2          | 159 ->161<br>160 ->161                                                     | 0.68483<br>0.12495                                                 | 477.04             | 2.5991      | 0.2122              |
|    | 3          | 158 ->161<br>160 ->163                                                     | 0.61156<br>-0.31091                                                | 366.52             | 3.3827      | 0.7891              |
|    | 4          | 157 ->161<br>158 ->161<br>160 ->163                                        | -0.17078<br>0.30111<br>0.59273                                     | 349.87             | 3.5437      | 0.2899              |
|    | 5          | 157 ->161<br>159 ->163<br>159 ->164<br>160 ->163<br>160 ->164              | 0.60845<br>-0.14830<br>-0.11002<br>0.13250<br>0.17048              | 327.41             | 3.7868      | 0.4580              |

**Table S2**. Main characteristics of singlet-singlet electronic transitions obtained by TD-DFT calculations for the lowest-energy structure of SMs **M1**, **M2** and **M3**.<sup>a</sup>

<sup>a</sup> The table has data for excitations with wavelength > 300 nm and oscillator strength > 0.1



**Figure S1**. Proposed  $\pi$ - $\pi$ -stacking with antiparallel alignment of the individual molecules; (a) **M1**, where the *N*-ethyl group inhibits a tight stacking due to steric hindrance. (b) **M3**, where a steric hindrance such as that of **M1** does not exist.



**Figure S2**. <sup>1</sup>H NMR of compound **5**.



Figure S3. <sup>1</sup>H NMR of compound M1.



**Figure S4**. <sup>13</sup>C NMR of compound **M1**.



Figure S5. <sup>1</sup>H NMR of compound M2.



**Figure S6**. <sup>13</sup>C NMR of compound **M2**.



Figure S7. <sup>1</sup>H NMR of compound M3.



**Figure S8**. <sup>13</sup>C NMR of compound **M3**.



Figure S9. HRMS of compound 5.



Figure S10. HRMS of compound M1.



Figure S11. HRMS of compound M2.



Figure S12. HRMS of compound M3.



**Figure S13**. Current-voltage characteristics under illumination of OSCs based on as cast active layers.