Thermal Decomposition of $FC(O)OCH_3$ and $FC(O)OCH_2CH_3$.

Matias Berasategui, Gustavo A. Argüello and Maxi A. Burgos Paci

INFIQC, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina

Supporting Information

Figura S1. a) Products of the thermal decomposition after 400 seconds of $FC(O)OCH_3$ at two different temperatures: 643 and 733 K. A SiF₄ spectra (purple solid line) is compared with the difference of 643 and 733 K spectra (green solid line). **b)** Reactives (CF₂O + CH₃OC(O)OCH₃) and products after 100 seconds of the thermal reaction at ~800K. FC(O)OCH₃ spectra from our own database.

Figura S2. a) Determination of the reaction order (*n*) using Half-life method for different temperatures. The slope is equal to -(n-1). **b)** first-order treatment for the concentration of FC(O)OCH₃ as a function of time. R-squared tends to 1 at higher temperatures. **c)** second-order treatment for the concentration of FC(O)OCH₃ as a function of time. R-squared tends to 1 at higher temperatures.

Figura S3. Transition States for the thermal decomposition of $FC(O)OCH_3$. Optimizations are made at B3LYP/6-311++G(3df,2pd) and only one imaginary frequency was obtained for each TS.

Figura S4. Transition States for the thermal decomposition of $FC(O)OCH_2CH_3$. Optimizations are made at B3LYP/6-311++G(3df,2pd) and only one imaginary frequency was obtained for each TS.

Table S1. Uni- and bi-molecular rate constants obtained from the kinetic fitting of the thermal decomposition of $FC(O)OCH_3$ at different temperatures. (The rate constants obtained from a first-order treatment are presented as well).

Temperature /	N ₂	From kinetic fitting		First-order
K	pressure /	First-order	Second-order	treatment
	mbar	<i>k</i> (T) / s⁻¹	<i>k</i> (T) / cm ³ s ⁻¹	<i>k</i> (T) / s⁻¹
			molec ⁻¹	
733 ± 1	0	1.58 x 10 ⁻²	7.71 x 10 ⁻²¹	1.63 x 10 ⁻²
728 ± 1	372			1.14 x 10 ⁻²
723 ± 1	0	9.56 x 10 ⁻³	5.72 x 10 ⁻²¹	9.86 x 10 ⁻³
718 ± 1	980			8.48 x 10 ⁻³
713 ± 1	0	5.80 x 10 ⁻³	4.04 x 10 ⁻²¹	5.98 x 10 ⁻³
708 ± 1	372			5.01 x 10 ⁻³
703 ± 1	0	3.05 x 10 ⁻³	2.88 x 10 ⁻²¹	3.70 x 10 ⁻³
698 ± 1	980			2.94 x 10 ⁻³
693 ± 1	0	1.63 x 10 ⁻³	1.97 x 10 ⁻²¹	2.31 x 10 ⁻³
688 ± 1	372			1.55 x 10 ⁻³
683 ± 1	0	9.02 x 10 ⁻⁴	1.46 x 10 ⁻²¹	1.30 x 10 ⁻³
678 ± 1	980			1.01 x 10 ⁻³
673 ± 1	0	5.04 x 10 ⁻⁴	9.63 x 10 ⁻²²	0.78 x 10 ⁻³
668 ± 1	980			0.64 x 10 ⁻³
663 ± 1	0	2.56 x 10 ⁻⁴	6.33 x 10 ⁻²²	0.47 x 10 ⁻³
643 ± 1	0	6.23 x 10 ⁻⁵	2.67 x 10 ⁻²²	0.17 x 10 ⁻³
623 ± 1	0	1.26 x 10 ⁻⁵	1.08 x 10 ⁻²²	0.68 x 10 ⁻⁴
603 ± 1	0	0.22 x 10 ⁻⁵	4.10 x 10 ⁻²³	0.30 x 10 ⁻⁴
583 ± 1	0	0.56 x 10 ⁻⁶	1.53×10^{-23}	0.16 x 10 ⁻⁴
563 ± 1	0	0.09 x 10 ⁻⁶	5.63 x 10 ⁻²³	0.07 x 10 ⁻⁴

Temperature / K	<i>k</i> (T) / s⁻¹	Standard Error ^a		
623 ± 1	8.90 x 10⁻¹	9.0 x 10 ⁻³		
603 ± 1	1.37 x 10 ⁻¹	2.8 x 10 ⁻³		
583 ± 1	1.13 x 10 ⁻¹	6.4 x 10 ⁻⁴		
573 ± 1	4.92 x 10 ⁻²	2.9 x 10 ⁻⁴		
563 ± 1	2.12 x 10 ⁻²	1.7 x 10 ⁻⁴		
553 ± 1	5.38 x 10 ⁻³	6.2 x 10 ⁻⁵		
513 ± 1	1.32 x 10 ⁻³	2.6 x 10 ⁻⁵		
503 ± 1	7.40 x 10 ⁻⁴	1.8 x 10 ⁻⁵		
488 ± 1	1.16 x 10 ⁻⁴	3.0 x 10 ⁻⁶		
473 ± 1	7.45 x 10 ⁻⁵	1.3 x 10 ⁻⁶		
453 ± 1	8.14 x 10 ⁻⁶	1.1 x 10 ⁻⁷		
433 ± 1	5.72 x 10 ⁻⁷	1.6 x 10 ⁻⁸		
^a Standard deviation from the linear regression.				

Table S2. Rate constants for the thermal decomposition of $FC(O)OCH_2CH_3$ at different temperatures.