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Several in situ approaches for characterizing cation segregation

X-ray fluorescence spectrometry (XRF), which detects fluorescence emissions when X-rays are absorbed by atoms, is a surface-
sensitive, non-destructive technique used for elemental analysis on the surface of materials.1 The signature is irrelevant to the electronic state 
of an element, but rather is dependent on the relative concentration of an element.2 Using in situ XRF, Fister et al. found evidence of 
reversible surface segregation in (001)-oriented La0.7Sr0.3MnO3 thin films over a wide range of temperatures and oxygen partial pressures 
(Fig. S1).3

Fig. S1 Surface Sr content varies with oxygen partial pressure in La0.7Sr0.3MnO3 thin films at T = 300 ~ 900 °C. Reprinted with permission from ref. 3. Copyright © 2008 

American Institute of Physics.

Resonant soft X-ray reflectivity (RXR) is a non-destructive approach for the characterization of the structure and composition of thin 
films, multilayers, and buried interfaces.4 Resonant anomalous X-ray reflectivity (RAXR) is a derived technique of RXR with the capacity of 
measuring composition profiles across surfaces and buried interfaces.5 Using RAXR spectra, Perret et al. determined Sr distributions in 
La0.6Sr0.4Co0.2Fe0.8O3-δ thin films at 973 K and 150 Torr oxygen partial pressure (Fig. S2a).6 Information of elemental distribution at each 
layer can be fitted to match the measured data (Fig. S2b), which can then be further revised by crystal truncation rods (Fig. S2c). These 
results demonstrate that temperature dependent RAXR has the capacity to provide atomic scale insights into cation segregation behaviors at 
near operating conditions for SOCs.
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Fig. S2 (a) Fit of all measured RAXR data points at 973 K and 150 Torr oxygen partial pressure. (b) Sr and La distribution by fitting RAXR data. (c) A comparison of RAXR 

fitted elemental distribution (solid lines) and results from a non-resonant and a resonant crystal truncation rod (dotted lines). Reprinted with permission from ref. 6. 

Copyright © International Union of Crystallography.

In situ Raman spectroscopy has been used to characterize the reaction products of impurities in SOC electrodes, such as reacting with 
silicon or carbon deposition.7, 8 The results can reflect the long-term durability of the electrodes of SOCs to a certain degree.9 For example, 
Pomfret et al. used in situ Raman spectroscopy and found that butane, pyrolysis methane, ethylene, and propylene reacted with Ni/YSZ 
anodes to form a variety of carbon deposits which significantly affect anode performances above 700 °C and/or under electric polarization 
(Fig. S3).10 More detailed reviews of the application of in situ Raman spectroscopy in the study of SOCs can be found in ref 8.

Fig. S3 Raman spectra of a Ni/YSZ porous anode which is pre-exposure to CH4 (top), after exposure to 5 cm3 of CH4 (middle), and after exposure to 3 L of CH4 (bottom). 

All measurements were made at open circuit voltage (OCV) and 715 °C. Reprinted with permission from ref. 10. Copyright © 2008 American Chemical Society.
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