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1. Electronic Structure Calculations 
 
All electronic structure calculations were performed using DFT-based methods in the Gaussian 09 

software package. The B3LYP exchange-correlation functional was used to obtain energies of 

hydride species (R-H) and their corresponding hydride acceptors (R+). The triple-z 6-311++G(d,p) 

basis set including polarization functions on both heavy-atoms and hydrogen was used to correctly 

describe the anionic nature of the hydride atom. The conductor-like polarizable continuum model 

(CPCM) was used to describe solvation effects in MeCN and DMSO. Optimization and frequency 

calculations were performed to ensure that all simulated molecules converged to local minimum 

energy geometries and to calculate zero-point energies. Vibrational thermal contributions to the 

enthalpy were used to calculate free energies at 298 K. The free energy differences between R-H 

and R+ were fit to experimental hydricities, in accordance with Muckerman’s approach, to obtain 

a correlation for hydricity predictions. The B3LYP/6-311++G(d,p)/CPCM level of theory was 

tested against M06-2X/6-311++G(d,p)/SMD, which, was found to reproduce CCSD(T)/cc-PVTZ1-

3 energies of organic molecules sufficiently well,4 as shown in Figure S1. Results show that the 

same correlation can be obtained using both levels of theory for a training set of 11 hydride donors. 

 
 



Figure S1. The Gibbs free energy difference ∆GHHR = G(R+) - G(R-H) fit against corresponding 

experimental hydriciticities (both in kcal/mol). The B3LYP/6-311++G(d,p)/CPCM (blue) and 

M06-2X/6-311++G(d,p)/SMD (orange) levels of theory show good agreement in the resulting 

correlations. Differences in the slopes are minimal (less than 0.002), whereas the y-intercepts are 

408.7 (blue) and 407.9 kcal/mol (orange). 

 
 
Table S1. Table of experimental (∆GH-) and calculated (∆GHHR) values (kcal/mol) presented in 
Figure S1. 

Entry Solvent ∆GH-(exp) ∆GHHR(B3LYP) ∆GHHR(M062X) 
15 MeCN 19 423.3 427.7 
16 MeCN 19 424.8 428.9 
19 MeCN 43 447.4 448.7 
20 MeCN 50 454.2 451.4 
21 MeCN 72 478.6 476.0 
34 MeCN 97.6 494.6 498.5 
35 MeCN 93.9 488.9 492.4 

125 MeCN 60 464.2 457.4 
170 DMSO 70 468.0 465.5 
185 MeCN 45 450.2 442.5 
195 MeCN 50.1 452.0 447.6 

 

2. Derivation for DG and Reduction Potentials 
𝛥G(CO2/HCOOH). The reaction free energy for the proton-coupled hydride transfer to CO2 

(𝛥G(CO2/HCOOH)) is determined using the hydride affinity of CO2 and the pKa of formic acid 

in acetonitrile (Scheme S1). The hydride affinity is obtained from the hydricity of formate (𝛥𝐺#$ 

= 44 kcal/mol5 in MeCN), whereas the pKa is derived from the aqueous values (pKa = 216 in 

MeCN). The values obtained for 𝛥G(CO2/HCOOH) is 72 kcal/mol in MeCN. 

 

Scheme S1. The thermochemical cycle for the determination of 𝛥G(CO2/HCOOH) using the 

hydride affinity of CO2 and the pKa of formic acid in acetonitrile.  
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Reduction potentials in MeCN. Reduction potentials in MeCN relevant to electrocatalysis 

(E(H+/H2) and E(CO2/HCOO–) are derived from thermochemical cycles represented in Scheme 

S2. The relevant hydricities are 𝛥𝐺#$(H2) = 76 kcal/mol7 and 𝛥𝐺#$(HCOO–) = 44 kcal/mol in 

MeCN,5 while the standard reduction potential for the two-electron reduction of a proton is –1.2 

V vs. NHE in MeCN.8 The values obtained for E(H+/H2) and E(CO2/HCOO–) are 0.46 V and –

0.23 V vs. NHE in MeCN.  

 

Scheme S2. Derivation of the reduction potentials (E(H+/H2) and E(CO2/HCOO–) in MeCN. 

 
 

3. Bond Dissociation Energies of Metal-Free Hydrides 
Bond dissociation energy (BDE) for the bond R-H, the energy for the release of a hydrogen atom, 
can be obtained from the second reduction potential E2 of R+ and the pKa value of R-H (Scheme 
S3). The derivation requires two reduction potentials of protons in MeCN8 (E(H+/H) = –1.77 V 
vs. NHE and E(H/H–) = –0.60 V vs. NHE). 
 
Scheme S3. Two thermochemical cycles for the determination of 𝛥𝐺#$ where 𝛥𝐺#$ can be 
represented as a function of E1 and the BDE. 

 
 
The scaling relationship for metal-free hydrides between 𝛥𝐺#$ and the first reduction potential E1 
(Figure 6 in the main text) indicate that BDEs are constant across all groups of donors. Indeed, 
BDE energies derived using Scheme S3 show values of ~75 kcal/mol (Figure S2), which is 
predicted by the intercept of the linear correlation shown in Figure 6. As shown in Scheme S3, the 
intercept consists of BDE values and the first reduction potential E1 of the proton (E(H/H–)).  
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Figure S2. Bond dissociation energy (BDE) as a function of the corresponding 𝛥𝐺#$ for different 

hydride donor groups. 
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