1 Text S1: Shade avoidance and light perception in plants

2 1. Shade avoidance

3 The shade avoidance syndrome (SAS) is a visually apparent, easy-to-measure response to 4 neighbors which has measurable effects on plant productivity and fitness correlates (Schmitt et 5 al. 1995; Schmitt 1997) and thus provides an excellent read-out for elucidating light, ethylene, and other signaling systems in plants. This has facilitated the discovery of specific receptor 6 7 proteins, which in turn has permitted the generation of loss- and gain-of-function mutants which 8 have advanced our understanding of neighbor responses. ETRs and EINs perceive ethylene (Hua & Meyerowitz 1998; Gallie 2015), while several receptor proteins perceive light: the 9 chromophore-containing sensors phytochromes (PHY) which absorb red and far-red light, 10 cryptochromes (CRY) and phototropins (PHOT) which absorb blue light and UV-A, LOV-11 12 domain proteins which absorb blue light; and the UV-B receptor UVR8, which is unique in that it relies on specific tryptophan residues rather than a chromophore for light absorption (Fraser et 13 al. 2016; Jenkins 2017; Mawphlang & Kharshiing 2017) (Fig. S1). 14 15 Both specific and general cues can trigger components of the SAS, and the perception of 16 these cues can be divided into early and late detection (Kegge & Pierik 2009; Pierik & de Wit 2014). At the most general end of the spectrum are physical contact between rosette leaf tips, 17 changes in R:FR and other binary light ratios due to green vegetation, and increasing ethylene 18 19 concentration in very dense canopies. Amongst these, the light ratio cues are likely most robust under field conditions of fluctuating light and wind. More specific cues include, for example, 20 21 plant volatiles other than ethylene, which can be genera- or species-specific, and are usually 22 situationally specific in their composition (Schuman et al. 2016). Together, perhaps more importantly, relative intensity of multiple light wavelengths provides specific information about 23

the nature of shade (direction, source, extent, etc.) and may allow a graduated response (Pierik & 24 de Wit 2014). Cues which are detected earlier such as touch and volatiles can allow plants to 25 predict shade and enable SAS components in order to truly avoid shading, while encroaching 26 changes in light quality provide information on severity at a later stage (Pierik & de Wit 2014). 27 28 More recent work has focused on SAS-related signaling in response to specific ratios of light 29 wavelengths and other cues, and with greater spatiotemporal resolution, in order to elucidate 30 general principles of plant neighbor perception and adaptation (Pierik & de Wit 2014; Ballaré & 31 Pierik 2017). In addition to changes aboveground, root exudates, interactions via fungal 32 networks, and other belowground phenomena also influence the growth environment for other plants and likely provide information about neighbor identity and traits (Pierik *et al.* 2012; 33 Babikova et al. 2013). Some work has studied variation in the SAS as an indicator of plant "kin 34 recognition", but current approaches do not separate kin recognition from phenotype matching 35 (e.g., (Crepy & Casal 2015; Till-Bottraud & Villemereuil 2015)); and kin recognition as a 36 concept may mislead research and confuse evolutionary inferences (Allen et al. 2013). 37

38 2. Photoreceptors and light signaling

39 Plants show pronounced growth responses to specific light wavelengths and their ratios. 40 Charles and Francis Darwin were the first to document phototropism in plants, in response to blue light (Darwin & Darwin 1880). Still unidentified nearly 100 years later, the mysterious plant 41 blue (UV) light receptors, thought to be flavin photoreceptors due to their putative action spectra, 42 43 were dubbed "cryptochromes" (also because of their importance in cryptogamic plants) (Gressel 1979; Yang et al. 2017). It was the advent of molecular genetics in the model plant Arabidopsis 44 thaliana (Arabidopsis) that solved the mystery. Screening mutants with constitutively elongated 45 hypocotyls (Fig. S1) revealed one mutant producing a long hypocotyl only under blue light, and 46

47 the mutation was localized to a gene first named *HY4*, and then CRY1: the first cryptochrome 48 (Ahmad & Cashmore 1993; Yang *et al.* 2017). In wild-type seedlings, hypocotyls shorten in 49 response to light perception as this indicates penetration of soil. Interestingly, cryptochromes 50 have since been shown to provide blue light input to the circadian clock, not only in plants, but 51 also in cyanobacteria, as well as animals and fungi (reviewed in (Gehring 2014).

52 Around the time that cryptochromes were maligned as a mystery, however, progress was being made on identifying a different conserved family of photoreceptors: the phytochromes 53 (PHY). Kasperbauer showed that the ratio between red and far-red light (R:FR) was lower 54 55 beneath Nicotiana tabacum (cultivated tobacco) canopies and that subjecting N. tabacum plants to FR promoted stem elongation (Kasperbauer 1971). The perception of shade, natural shade 56 conditions, and resulting growth responses were then described in detail by Smith and colleagues 57 58 (Holmes & Smith 1975; Smith 2000) and attributed to phytochrome, a protein described from plants in the 1950's as R:FR-reversible (Hendricks & Borthwick 1959; Ballaré & Pierik 2017). 59 60 Phytochromes have also been identified in some bacteria, fungi, heterokont and glycauphyte algae (Duanmu et al. 2014). Over the following years, Smith and colleagues demonstrated that 61 the R:FR ratio was reliable indicator of canopy cover in field studies; that between 1.2 (full 62 63 sunlight) and 0.1 (deep shade), changes in R:FR correlate linearly to estimated phytochrome photoequilibrium in seedling extracts; and that the rate of internode elongation is inverse to the 64 calculated P_{fr}/P_{total} ratio from light sources (Smith 1982; Ballaré & Pierik 2017). Armed with 65 66 these precise phenotyping and physiological tools, biologists in the 1980's and 1990's began to conduct field experiments to determine the relationship among phytochrome, the SAS, and plant 67 68 performance in nature (reviewed in (Ballaré & Pierik 2017)), but these studies lacked tools for 69 precise genetic manipulation of plants' capacity for the SAS. In the 1990's, in glasshouse

experiments, Schmitt and colleagues demonstrated that the density-dependent plasticity of the
SAS in competing plants improved the performance of wild-type (WT) *N. tabacum* and *Brassica rapa* (turnip mustard) in comparison to transgenic *N. tabacum* and mutant *B. rapa* lines "stuck"
with phytochrome function turned either on or off (Schmitt *et al.* 1995).

74 The discovery of each new photoreceptor has been facilitated by a combination of 75 straightforward phenotypic markers, and mutant screening approaches. Molecular genetic tools, 76 combined with knowledge of photoreceptor genes, have permitted the generation of selectively blind plants which reveal possible photoreceptor functions, and, simultaneously, indicate 77 78 adaptive significance of light sensing in plants. These discoveries have broader evolutionary implications, as most plant photoreceptors have homologues in animals, fungi, and 79 cyanobacteria; which function in phototaxis, vision, and the circadian clock (Gehring 2014). 80 81 Because the majority of these molecularly "enabled" experiments have been conducted under laboratory or glasshouse conditions with cultivated plants, the functional-evolutionary loop has 82 not been closed and our mechanistic knowledge in this field currently far exceeds our functional 83 understanding. 84

85 As an example, it has more recently been shown that negative regulation of photoreceptor 86 responses is critical to their function. In 2005, Sessa and colleagues identified a bHLH transcription factor already known to be a component of both CRY and PHY signaling in 87 88 A. thaliana, HFR1, which is strongly induced by a low R/FR ratio and remains up-regulated 89 during prolonged exposure. The protein, which they renamed HFR1/SICS1 (Slender In Canopy Shade), down-regulates the expression of several other transcription factors involved in the SAS, 90 91 preventing a runaway elongation response under prolonged shade (Sessa et al. 2005). More 92 recently, Wang and colleagues showed that CRY2 in A. thaliana undergoes light-mediated

dimerization in order to be active, and that the protein BIC1 inhibits this dimerization process, 93 94 maintaining a pool of monomers even under blue light and thus maintaining blue light sensitivity (Fankhauser & Ulm 2016; Wang et al. 2016). Such a regulatory mechanism, relying on an 95 additional protein regulator to inhibit dimerization, may be shared with LOV-domain 96 photoreceptors and UVR8, which also require homodimerization for activity (Fankhauser & Ulm 97 98 2016). There is also evidence from attenuation of BIC expression in *cry* mutants that CRY 99 signaling may up-regulate the BIC negative regulators (Fankhauser & Ulm 2016) as in the case of PHY signaling up-regulating HFR1/SICS1 (Sessa et al. 2005). The apparent wide 100 101 conservation across photoreceptors of negative regulation and the maintenance of an active pool 102 even under prolonged stability of light conditions indicate that these features are important to the 103 function of light perception. Under natural conditions, it is likely critical for plants to maintain 104 sensitivity to all "plant-visible" wavelengths of light. Although plant photoreceptors have been identified for UV-A, UV-B, PAR wavelengths, green, and far-red (Fraser et al. 2016), it is not 105 understood how plants integrate the full spectrum of light, or how this integrated information 106 107 informs an adaptive SAS and other light-mediated responses, including regulation of circadian phenomena (Fig. S1). 108

Figure S1. Light signaling: An example where mechanistic understanding surpasses ecological understanding. (A) Photoreceptors which are sensitive to all colors of light in the visible spectrum as well as UV-B, UV-A, and far-red, have now been identified in plants, and these light receptors interact in complex signaling cascades channeled through so-called phytochrome interacting factors (PIF) and other protein intermediaries, as indicated here in a simplified

scheme (based on (Fraser et al. 2016)). *Asterisks indicate inactive forms, and solid lines 117 represent mechanisms shown to regulate at least one of the key PIFs controlling shade avoidance 118 and seedling hypocotyl elongation (PIF4, PIF5 or PIF7) while dotted lines represent 119 hypothesized regulatory mechanisms. See (Fraser et al. 2016) for a detailed discussion of 120 121 photoreceptor interactions. Monomerization and dimerization provide an additional regulatory 122 layer: in A. thaliana, the cryptochrome CRY2 is active as a homodimer; in contrast, UVR8 123 homodimers are inactive, and in both cases regulatory proteins (not shown) facilitate either 124 monomer- or dimerization (Fankhauser & Ulm 2016). (B) Laboratory screens for mutant 125 seedlings with elongated hypocotyls under specific light conditions are traditionally used to 126 identify photoreceptor genes and their interaction partners: image drawn from a study identifying 127 AtPP7, a protein interactor of CRY1 (the *A. thaliana* mutant is named *hv4*) (Eckardt 2003; 128 Moller *et al.* 2003). Ler and Col are the wild-type (WT) accessions used to produce the *hv4* mutant and two lines (L5 and L7) of the AtPP7 mutant, respectively. (C) Seedling screens can 129 130 identify mutants with extreme phenotypes which may not be viable in nature. Photoreceptors are 131 expressed with tissue-specific patterns, including in roots, and information from different light wavelengths is integrated to inform plastic and adaptive responses in a complex natural light 132 133 environment. Three paths of whole-plant light perception are illustrated. 1: Light is perceived by 134 photoreceptors (R) in shoots, resulting in changes to sugar signaling, RNA and hormone 135 production, and protein accumulation involved in root-shoot signaling and other responses; 2: 136 light piped through stems, likely by the vasculature, is perceived by root-expressed phytochrome B (PhyB); 3: light penetrating the soil is directly perceived by photoreceptors (R) expressed in 137 138 roots (based on (Lee et al. 2017)). Arrow 4 shows green- and far red-enriched light filtered 139 through a canopy towards a recently emerged seedling.

140 Table S1

141 A functional overview of (mostly non-hormonal) plant volatiles in plant-plant-arthropod interactions: 34 years of literature on 33

142 neighbor plant species and 35 emitter species (all 33 "neighbor" species plus Solanum lycopersicum and Rhododendron tomentosum)

143 from 14 families, presented chronologically. Key: ▲, increase; ▼, decrease; −, no change.

Effect on neighboring plants			<u>Emitters</u>				
Dependent						Functional	
variables	Plants	Treatment	Control	Plants	Setting	inference	Reference
Caterpillar growth ▼	3- to 4-year- old <i>Alnus</i> <i>rubra</i> , <i>Salix</i> <i>sitchensis</i>	Experimental infestation with Malacosoma californicum pluviale, Hyphantria cunea	Paired uninfested plants	Same as neighbors, different plants	Field study: Natural stands/ Lab study: Cut leaves from wild plants. No root contact observed.	Increased direct resistance in damaged and nearby trees due to aerial factors	(Rhoades 1983)
Resistance-related metabolites ▲	1.5- to 4- month-old <i>Populus</i> x <i>euroameric-</i> <i>ana</i> and <i>Acer</i> <i>saccharum</i>	Experimental mechanical damage (tearing of leaves)	Leaves not damaged	Same as neighbors, different plants	Lab study: Plexiglass enclosure	Increase in resistance-related leaf metabolites due to volatile factors	(Baldwin & Schultz 1983)
Caterpillar growth	Alnus rubra, Rosa nutkana, Malus diversifolia	Naturally occurring herbivory by <i>Malacosoma</i> californicum pluviale	None: correl- ational	Same as neighbors, different plants	Field study: Natural stands/ Lab study: Cut leaves from wild plants	No correlation of resistance with proximity to naturally damaged neighbors	(Myers & Williams 1984)

Effect on neighbo	oring plants		Emitters				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
Herbivorous mite oviposition ▼/ Predatory mite attraction ▲	Gossypium hirsutum seedlings	Experimental <i>Tetranychus</i> <i>urticae</i> infestation	Not infested	Same as neighbors, different plants	Lab study: Wind tunnel	Increased direct and indirect resistance due to volatile factors	(Bruin <i>et al.</i> 1992)
Aphid fecundity ▼	<i>Nicotiana tabacum</i> leaf discs	Experimental mechanical damage to cut leaves (crushing)/ Synthetic compound dilutions	Leaves not damaged/ Solvent	Solanum lycopersi- cum and Nicotiana tabacum leaf discs	Lab study: Closed glass Petri dishes	Increased direct resistance with exposure to GLV alcohols and aldehydes, and direct effect of aldehydes on aphids	(Hildebrand et al. 1993)
Leaf damage and oviposition by <i>Agelastica alni</i> beetles ▼	Alnus glutinosa	Experimental mechanical damage (crunching and tearing leaves)	Leaves not damaged	Same as neighbors, different plants	Field study: Natural stands/ Lab study: Cut leaves from wild plants	Increased direct resistance in damaged and nearby trees	(Dolch & Tscharntke 2000)
Damage by generalist herbivores ▼/ Polyphenol oxidase activity ▲	Nicotiana attenuata	Experimental mechanical damage (clipping branches)	Branches not clipped	Artemisia tridentata	Field study: Natural <i>A</i> . <i>tridentata</i> populations, transplanted <i>N. attenuata</i> , experimental air or soil barriers	Increased resistance due to aerial contact with emitter, hypothesized to be mediated by methyl jasmonate	(Karban <i>et al.</i> 2000)
Emission of herbivory-induced volatiles ▲/ Stored	Gossypium hirsutum	Diluted methyl jasmonate	Methanol (solvent)	None	Lab study: Exposure in ventilated	Exposure to methyl jasmonate induces release of	(Rodriguez- Saona <i>et al.</i> 2001)

Effect on neighb	<u>oring plants</u>		<u>Emitters</u>				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
terpene volatiles					plexiglass containers	many herbivory- induced volatiles, but not stored compounds: tissue disruption required	
Leaf damage by specialist nerbivores ▼/ Resistance-related metabolites and proteins ▲	Alnus glutinosa	Experimental mechanical damage/ Experimental infestation by <i>Agelastica alni</i>	Leaves not damaged	Same as neighbors, different plants	Field study: Natural stands/ Lab study: Potted plants	Increased direct resistance in damaged and nearby trees	(Tscharntke et al. 2001)
Leaf damage ▼/ Polyphenol oxidase activity ▲/ Filled seed capsules ▼	Nicotiana attenuata	Experimental mechanical damage (clipping branches)/ Experimental herbivory	Branches not clipped/ No infestation	N. atten- uata, A. tridentata	Field study: Natural <i>A</i> . <i>tridentata</i> populations, planted or co-occurring <i>N. attenuata</i>	<i>N. attenuata</i> plants with damaged <i>A.</i> <i>tridentata</i> neighbors have increased resistance but not increased fitness; clipping conspecific neighbors has no effect on resistance	(Karban <i>et</i> <i>al.</i> 2003)
Biomass allocated to roots vs. shoots ▲	<i>Hordeum vulgare</i> cv. Kara	No treatment	No plant	<i>H. vulgare</i> cv. Alva or Kara	Lab study: Open-flow chambers with large rooting	Exposure to volatiles from the Alva cultivar increased root:shoot	(Ninkovic 2003)

Effect on neighboring plants			Emitters				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
					volume	biomass ratio, likely altering competitive ability	
Induced stress hormone (jasmonic acid, JA) and sesquiterpenes ▲	Zea mays seedlings	Experimental infestation with Spodoptera exigua larvae/ GLV dilutions	No infestation/ Solvent	Same as neighbors, different plants	Lab study: Flow- through (longer exposure) or closed (<3 h exposure) glass chambers	GLV exposure primes induction of resistance- related hormones and volatiles	(Engelberth <i>et al.</i> 2004)
Leaf damage by generalist and specialist herbivores ▼/ —	Lomatium dissectum, Lupinus polyphyllus, Valeriana californicum, and Artemisia tridentata	Experimental mechanical damage (clipping branches)	Branches not clipped	A. tridentata	Field study: Natural populations	Exposure to damaged <i>A</i> . <i>tridentata</i> volatiles, which are abundant, induces resistance in conspecifics and a highly inducible tobacco (previous studies), but not in all plants.	(Karban <i>et</i> <i>al.</i> 2004)
Resistance-related gene transcripts, metabolites and proteins ▲/ Specialist	Nicotiana attenuata	Clipped foliage placed around receiver/ Dilutions of pure	No clipped foliage/ Solvent	Artemisia tridentata	Field study: Natural populations/ Lab study: Exposure in	Exposure to volatiles from <i>A</i> . <i>tridentata</i> clippings, specifically (<i>E</i>)-2-	(Kessler <i>et</i> <i>al.</i> 2006)

Effect on neighb	<u>oring plants</u>		<u>Emitters</u>				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
herbivore mortality ▲/ Herbivore damage ▼		compounds.			chimney- ventilated chambers	hexenal and methacrolein, primes resistance in <i>N. attenuata</i>	
Herbivory-induced gene transcripts ▼/ Induced hormones, metabolites, and proteins —	<i>Nicotiana attenuata</i> rosette-stage plants	Experimental mechanical damage (holes punched in leaves) with or without added <i>Manduca sexta</i> regurgitant (R)	Leaves not damaged	Same as neighbors, different plants	Glasshouse study: Exposure in flow-through boxes	Some transcriptional responses to wounded or R- treated neighbor leaf volatiles are suppressed by GLV and terpenoid components	(Paschold <i>et al.</i> 2006)
Extrafloral nectar (EFN) secretion with or without mechanical damage ▲	Phaseolus lunatus	Aerial exposure to synthetic volatile blend in lanolin paste on plastic strips	Lanolin	None	Field study: Aerial exposure of plants in natural populations	A synthetic blend representative of herbivore-induced volatiles primes EFN secretion	(Heil & Kost 2006)
Extrafloral nectar secretion \blacktriangle / Leaf, inflorescence production \bigstar / Predator population \bigstar / Herbivore damage	Phaseolus lunatus	48 h of damage by naturally occurring herbivores/ Synthetic blend or single compounds in lanolin paste	No damage/ Lanolin	Same as neighbors, different plants/ None	Field study: Aerial exposure of plants in natural populations to emitting tendrils or synthetic blend	Exposure to herbivore-induced volatiles, specifically (Z)-3- hexenyl acetate, increases EFN secretion and indirect defense in naturally occurring plants	(Kost & Heil 2006)

Effect on neighb	<u>oring plants</u>		<u>Emitters</u>				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
Leaf number ▲/ Leaf tip number ▲/ Induced EFN secretion ▲/ Herbivore damage	Phaseolus lunatus	Detatched tendrils or same plant: Herbivory by bagged beetles/ Mechanical damage (holes punched in leaf) plus JA	No infestation/ No damage	Phaseo- lus lunatus	Field study: Natural population/ Glasshouse study: Potted plants; bags used to constrain volatile diffusion	Herbivore- induced volatiles primes secretion of EFN, reduces herbivory and increases leaf production in nature	(Heil & Silva Bueno 2007)
JA production ▲/ Transcripts of JA biosynthetic genes	Zea mays seedlings	Dilutions of pure compounds	Solvent	None	Lab study: Exposure of plants in closed plexiglass chambers	GLVs, particularly (Z)-3- hexenyl acetate, induce JA biosynthesis in Z. mays	(Engelberth et al. 2007)
JA ▲/ Linolenic acid ▲/ JA biosynthetic genes ▲/ Defense- related gene transcripts ▲	12- to 15- week-old <i>Populus</i> <i>deltoides</i> × <i>nigra</i> cuttings	Dilution of pure compound used	Solvent; non- orthosti- chous, similarly aged leaf on same plant	None	Lab study: Exposure of two single leaves on- plant in leaf plexiglass chambers	The GLV (Z)-3- hexenyl acetate primes the herbivore induction of JA biosynthesis and defense metabolites	(Frost <i>et al.</i> 2008)
Seedling germination ▼	Seeds of Artemisia tridentata, Eriogonum umbellatum, and Leymus	Experimental mechanical damage (clipping branches)	No damage to branches	A. tridentata	Field study: Natural population/ Lab study: Potted plants with or	Volatiles released from clipped branches inhibit germination of seeds of other species	(Karban 2007)

Effect on neighbo	oring plants		<u>Emitters</u>				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
	cinereus				without different barriers		
Defense-related gene transcripts ▲/ Induced volatile emission ▲/ Induced parasitoid attraction ▲/ Herbivore growth ▼/ Damage from herbivore ▼	Zea mays seedlings (10-14 days old)	Infestation by Spodoptera littoralis	Not infested	Same as neighbors, different plants	Lab study: Potted plants in controlled flow-through glass chambers	Herbivory- induced volatiles prime direct and indirect defense responses in neighbors.	(Ton <i>et al.</i> 2007)
Attractiveness to the following: generalist aphid ▼/ specialist aphid ▲/ generalist parasitoid ▲/ specialist parasitoid —/ Transcriptome regulation (subset) ▲/ Phenotype of upregulated CYP450 ▲	Arabidopsis thaliana	Pure compounds: <i>cis</i> - jasmone, methyl jasmonate	No compound addition	None	Lab study: Plants exposed in closed glass chambers; olfacto- meters used for choice assays	<i>cis</i> -Jasmone increases non- glucosinolate- based resistance against generalist herbivores	(Bruce <i>et al.</i> 2008)
Leaf damage from herbivores ▼	Artemisia tridentata	Experimental mechanical damage (leaf clipping)/	Not clipped/ Not infested	Same as neighbors, different plants	Field study: Natural populations	Exposure to a damaged emitter induces resistance if exposure occurs	(Shiojiri & Karban 2008a)

Effect on neighbo	oring plants		<u>Emitters</u>				
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
		Experimental infestation with <i>Trirhabda</i> <i>pilosa</i> larvae				during peak herbivory season	
Percent of leaves damaged by herbivores ▼	Artemisia cana, A. douglasiana	Experimental mechanical damage (leaf clipping)	Clipped and bagged to block aerial contact	Same as neighbors; same plants or different plants	Field study: Natural population	Aerial contact with emitter induces resistance regardless of whether the receiver is a branch of the same plant or a neighbor, but only in <i>A. cana</i>	(Shiojiri & Karban 2008b)
Leaf area consumed by <i>Lymatria dispar</i> ▼/ Volatile emission per leaf area consumed ▲/ leaf JA concen- tration ▲/ SA concentration —/ Linolenic acid concentration —/ evidence of defensive metabolites in FT- IR spectra ▲	Vaccinium corymbosum	Experimental infestation by <i>L</i> . <i>dispar</i> larvae	Mock treatment (polyester bags used to contain larvae)	Neighbor- ing branch on same plant	Lab study: Plexiglass containers and polyester or plastic bags to control exposure and assay volatiles	Exposure to HIPVs from neighboring branches elicits direct and indirect defense within a plant	(Rodriguez- Saona <i>et al.</i> 2009)
Volatile emission	Betula	None: Vicinity	Mono-	Rhodo-	Field study:	B. pendula	(Himanen et

Effect on neighb	<u>oring plants</u>		<u>Emitters</u>				
Dependent			_			Functional	
variables	Plants	Treatment	Control	Plants	Setting	inference	Reference
▲/ Herbivore attraction ▼/ Aphid incidence	pendula	in mixed species stands	cultures of <i>B. pendula</i>	dendron tomen- tosum	Experimental plantation, natural population	growing within 5 m of <i>R</i> . tomentosum accrue semi- volatiles (C15) from <i>R</i> . tomentosum, likely by surface adherence, rendering <i>B</i> . <i>pendula</i> less attractive to some herbivores.	<i>al.</i> 2010)
Number of leaves damaged by herbivores of 100 assay leaves ▼	Artemisia tridentata	Air transfer from plants with experimental mechanical damage (leaf clipping)	Air transfer from unclipped plants	Same as neighbors, different plants	Field study: Natural population	Exposure to headspace transferred from clipped neighbors increases resistance	(Karban <i>et al.</i> 2010)
Attraction of Cotesia glomerata parasitoids to nduced plants $\blacktriangle/$ LIPOXYGENASE ranscript abundance $\blacktriangle/$ Growth of Pieris brassicae and Mimestris	Brassica oleracea	Experimental infestation with <i>P. brassicae</i> larvae	Not infested	Same as neighbors, different plants	Lab study: Controlled flow design	Exposure to herbivory- induced volatiles from neighbors primes direct and indirect resistance in <i>B. oleracea</i>	(Peng <i>et al.</i> 2011)

Effect on neighb	oring plants		Emitters			Eurotion al	
variables	Plants	Treatment	Control	Plants	Setting	inference	Reference
<i>brassicae</i> larvae ▼					8		
Herbivore performance ▼/ Attractiveness to predators or parasitoids of herbivores ▲/ Herbivory-induced volatile emission ▲/ Attractiveness of exposed, herbivore-infested conspecifics to predators or parasitoids ▲	Phaseolus lunatus, Zea mays	Transgenic plants overexpressing (<i>E</i>)-β-ocimene synthase	Wild-type	Nicotiana tabacum	Lab study: Exposure in open-flow tunnel/ Glasshouse study: Proximity of potted plants	Exposure to (E) - β -ocimene in a plant volatile background increases direct and indirect resistance to herbivores in distantly related crop species	(Muroi <i>et al.</i> 2011)
Growth of <i>Mythimna</i> <i>separata</i> larvae ▼	Zea mays seedlings (7 d old)	Experimental infestation by <i>M. separata</i>	Not infested	Zea mays seedlings (14 d old)	Lab study: Exposure in flow-through box	Aerial exposure to herbivory- induced volatiles from conspecifics increases resistance to a specialist herbivore in maize	(Ramadan <i>et al.</i> 2011)
Proportional leaf damage in the field/ Lifetime seed production/ Developmental phenology/ Leaf	Achyra- chaena mollis, Lupinus nanus, Sinapis	Experimental mechanical damage (pins or pliers)	Not damaged	Con- specifics, either more related (same	Field study: Experimental plantation including transplanted and potted	The outcome of exposure to damaged neighbor volatiles depends on species and	(Pearse <i>et al.</i> 2012)

Effect on neighb	oring plants		<u>Emitters</u>				
Dependent						Functional	
variables	Plants	Treatment	Control	Plants	Setting	inference	Reference
damage in a laboratory assay	arvensis			maternal family) or less related (different maternal families)	plants/ Lab study: Assays using potted plants from field	relatedness; more related emitters result in lower fitness for neighbors, perhaps because related neighbors are worse competitors	
Volatile emission —/ Cicadulina storeyi-induced volatile emission \blacktriangle / Attraction of C. storeyi —/ Attraction of C. storeyi to induced plants \blacktriangle	Zea mays	None	Solvent spray (aqueous)	<i>cis-</i> Jasmone spray	Lab study: Y-tube olfactometer assays	<i>cis</i> -Jasmone application primes volatile- mediated defense, making plants less attractive to aphids.	(Oluwafemi et al. 2013)
Percent of leaves damaged by naturally occurring herbivores ▼	Salix exigua, S. lemmonii	Experimental mechanical damage (cutting leaves)	No cutting	Con- specific, clone or non-clone	Field study: Potted cuttings from plants in the local population, or naturally occurring plants	Exposure to wounded neighbor volatiles increases resistance of <i>Salix</i> spp. to herbivores; unclear role of relatedness	(Pearse <i>et al</i> . 2013)

Dependent variables Plants Functional inference Reference Leaf area consumed by experimentally added <i>Pieris rapae</i> larvae ▼ Arabidopsis thaliana (WT Col-0) Experimental mechanical damage Not damaged (crushing leaves with forceps) OsfHPL3- ver- expressing transgenic Glasshouse study: placed Volatile HPL pathway products (Savchenko (Savchenko study: placed Biomass allocated to roots vs. shoots Hordeum vulgare cv. Kara Far-red light supplement- ation (reduced R:FR) No H.vulgare vv. Alva ation (reduced R:FR) No H.vulgare vv. Alva ation (reduced R:FR) Volatiles indicate to roots vs. shoots (Kegge et value) Harbivgra-induced Zag mage Sunthatic Far-red light supplement- ation (reduced R:FR) No H.vulgare vv. Alva ation (reduced R:FR) Volatiles indicate supplement ation (reduced R:FR) Volatiles indicate Reference Harbivgra-induced Zag mage Sunthatic Far red light No H.vulgare R:FR) Volatiles indicate R:FR) Volatiles indicate R:FR)	<u>Effect on neighb</u>	<u>oring plants</u>		<u>Emitters</u>				
Leaf area consumed by experimentally added <i>Pieris rapae</i> Arabidopsis thaliana (WT Col-0) added <i>Pieris rapae</i> Experimental mechanical damage (crushing leaves with forceps) Not damage (OE) transgenic <i>A</i> . Glasshouse study: pathway products <i>et al.</i> 2013) Study: <i>at anage</i> (GLVs) increase mitters, 1 m resistance to between sets of potted plants Biomass allocated to roots vs. shoots <i>Hordeum</i> vulgare cv. Kara Far-red light supplementation (reduced R;FR) No <i>H. vulgare</i> cv. Alva adio (cxposed display) Volatiles indicate (Kegge <i>et al.</i> 2015) Biomass allocated to roots vs. shoots <i>Hordeum</i> vulgare cv. Kara Far-red light supplement-ation (reduced R;FR) No <i>H. vulgare</i> cv. Alva adio (cxposed display) Volatiles indicate (kegge <i>et al.</i> 2015) Biomass allocated to roots vs. shoots <i>Hordeum</i> vulgare cv. Kara Supplement-ation (reduced R;FR) No <i>H. vulgare</i> cv. Alva adio (cxposed display) Volatiles indicate (kegge <i>et al.</i> 2015) Biomass allocated to roots vs. shoots <i>Hordeum</i> vulgare cv. Kara Supplement-ation (reduced R;FR) Plant Volatiles indicate (cxposed display) Volatiles indicate (kegge <i>et al.</i> 2015) Biomass allocated to roots vs. shoots <i>Hordeum</i> vulgare cv. Kara Supplement -ation or no plant <i>H. vulgare</i> cv. Alva cultive indicate (cxposed display) Volatiles indicate (kegge <i>et al.</i> 2015) Biomass allocatid display cond display <i>R</i> :FR)	Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
Biomass allocated to roots vs. shootsHordeum vulgare cv. KaraFar-red light supplement- ation (reduced R:FR)No supplement -ation or no plantH. vulgare cv. Alva -ation or no plantLab study: Open-flow chambers volumeVolatiles indicate (kegg et al. 2015)With large rootingFR-enriched light), in which case root:shoot biomass allocation in receiver is reduced, while exposure to volatiles from the unshaded Alva cultivar increases the root:shoot biomass ratio, indicative of the receiver tuning a competitive growth response	Leaf area consumed by experimentally added <i>Pieris rapae</i> larvae ▼	Arabidopsis thaliana (WT Col-0)	Experimental mechanical damage (crushing leaves with forceps)	Not damaged	<i>OsHPL3-</i> over- expressing (OE) transgenic <i>A.</i> <i>thaliana</i>	Glasshouse study: Neighbors placed between 2 emitters, 1 m between sets of potted plants	Volatile HPL pathway products released after damage (GLVs) increase resistance to <i>P. rapae</i> larvae	(Savchenko et al. 2013)
Herbivore induced Zea mays Synthetic Empty Z mays Lab study: Indole exposure (Erb et al	Biomass allocated to roots vs. shoots	<i>Hordeum vulgare</i> cv. Kara	Far-red light supplement- ation (reduced R:FR)	No supplement -ation or no plant	<i>H. vulgare</i> cv. Alva	Lab study: Open-flow chambers with large rooting volume	Volatiles indicate whether emitter is shaded (exposed to FR-enriched light), in which case root:shoot biomass allocation in receiver is reduced, while exposure to volatiles from the unshaded Alva cultivar increases the root:shoot biomass ratio, indicative of the receiver tuning a competitive growth response	(Kegge <i>et</i> <i>al.</i> 2015)
10101000 10000 1	Herbivore-induced	Zea mavs	Synthetic	Empty	Z. mavs	Lab study:	Indole exposure	(Erb <i>et al</i> .

Effect on neighboring plants		Emitters					
Dependent variables	Plants	Treatment	Control	Plants	Setting	Functional inference	Reference
mono- and homoterpenes ▲/ Herbivore-induced jasmonoyl- isoleucine (JA-Ile) ▲/ Herbivore- induced abscisic acid (ABA) ▲		indole, or experimental infestation with Spodoptera littoralis	dispenser, or indole- deficient mutant	with same genetic back- ground as neighbor	Controlled- flow system	primes emission of mono- and homoterpene volatiles and is required for their systemic induction; and primes induced JA-Ile and ABA.	2015)
Movement of Trirhabda virgate \blacktriangle / Leaf area consumed by T. virgate \blacktriangledown / Relative growth rate of T. virgate \blacktriangledown	Solidago altissima	Experimental infestation by <i>T. virgate</i>	No infestation	Same as neighbors, different plants	Field study: Natural stands/ Glasshouse study: Potted clones at different distances	Proximity to an emitter elicits resistance to <i>T.</i> <i>virgate</i> via induced volatiles, increasing herbivore movement	(Morrell & Kessler 2017)

145 References

146

- 147 1.Ahmad, M. & Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with
- 148 characteristics of a blue-light photoreceptor. Nature, 366, 162–166
- 149
- 150 2. Allen, B., Nowak, M.A. & Wilson, E.O. (2013). Limitations of inclusive fitness. Proc. Natl.
- 151 Acad. Sci., 110, 20135–20139
- 152
- 153 3.Babikova, Z., Gilbert, L., Bruce, T.J.A., Birkett, M., Caulfield, J.C., Woodcock, C., et al.
- 154 (2013). Underground signals carried through common mycelial networks warn neighbouring
- 155 plants of aphid attack. Ecol. Lett., 16, 835-843
- 156
- 157 4.Baldwin, I.T. & Schultz, J.C. (1983). Rapid changes in tree leaf chemistry induced by damage:
- 158 evidence for communication between plants. Science, 221, 277-279
- 159
- 160 5.Ballaré, C.L. & Pierik, R. (2017). The shade-avoidance syndrome: Multiple signals and
- 161 ecological consequences. Plant Cell Environ., 40, 2530-2543
- 162
- 163 6.Bruce, T.J., Matthes, M.C., Chamberlain, K., Woodcock, C.M., Mohib, A., Webster, B., et al.
- 164 (2008). cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic
- 165 interactions with aphids and their parasitoids. *Proc. Natl. Acad. Sci. U. S. A.*, 105, 4553–4558 166
- 167 7.Bruin, J., Dicke, M. & Sabelis, M.W. (1992). Plants are better protected against spider-mites 168 after exposure to volatiles from infested conspecifics. *Experientia*, 48, 525–529
- 169
- 170 8.Crepy, M.A. & Casal, J.J. (2015). Kin recognition by self-referent phenotype matching in
- 171 plants. New Phytol., 209, 15-16
- 172
- 173 9.Darwin, C. & Darwin, F. (1880). The power of movement in plants. John Murray, London,
- 174 England, UK
- 175
- 176 10.Dolch, R. & Tscharntke, T. (2000). Defoliation of alders (*Alnus glutinosa*) affects herbivory
- 177 by leaf beetles on undamaged neighbours. *Oecologia*, 125, 504–511
- 178
- 179 11.Duanmu, D., Bachy, C., Sudek, S., Wong, C.-H., Jimenez, V., Rockwell, N.C., et al. (2014).
- 180 Marine algae and land plants share conserved phytochrome signaling systems. *Proc. Natl. Acad.*181 *Sci.*, 111, 15827–15832
- 182
- 183 12.Eckardt, N.A. (2003). A component of the cryptochrome blue light signaling pathway. *Plant*184 *Cell*, 15, 1051–1052
- 185
- 186 13.Engelberth, J., Alborn, H.T., Schmelz, E.A. & Tumlinson, J.H. (2004). Airborne signals
- 187 prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. U. S. A., 101, 1781–1785
- 188
- 189 14.Engelberth, J., Seidl-Adams, I., Schultz, J.C. & Tumlinson, J.H. (2007). Insect elicitors and

- 190 exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of
- 191 12-oxo phytodienoic acid reductases in Zea mays. Mol. Plant-Microbe Interact., 20, 707–716 192
- 193 15.Erb, M., Veyrat, N., Robert, C. a. M., Xu, H., Frey, M., Ton, J., *et al.* (2015). Indole is an essential herbivore-induced volatile priming signal in maize. *Nat. Commun.*, 6, 6273
- 194 (
- 196 16.Fankhauser, C. & Ulm, R. (2016). A photoreceptor's on-off switch. Science, 354, 282–283
- 197
- 198 17.Fraser, D.P., Hayes, S. & Franklin, K.A. (2016). Photoreceptor crosstalk in shade avoidance.
- 199 *Curr. Opin. Plant Biol.*, 33, 1–7
- 200
- 201 18.Frost, C.J., Mescher, M.C., Dervinis, C., Davis, J.M., Carlson, J.E., De Moraes, C.M., et al.
- 202 (2008). Priming defense genes and metabolites in hybrid poplar by the green leaf volatile *cis*-3-203 hexenyl acetate. *New Phytol.*, 180, 722–734
- 204
- 205 19.Gallie, D.R. (2015). Ethylene receptors in plants why so much complexity? *F1000 Prime* 206 *Reports*, 7, 39
- 207
- 208 20.Gehring, W.J. (2014). The evolution of vision. *Wiley Interdiscip. Rev. Dev. Biol.*, 3, 1–40 209
- 210 21.Gressel, J. (1979). Blue light photoreception. *Photochem. Photobiol.*, 30, 749–754
- 211
- 212 22.Heil, M. & Silva Bueno, J.C. (2007). Within-plant signaling by volatiles leads to induction
- 213 and priming of an indirect plant defense in nature. Proc. Natl. Acad. Sci. U. S. A., 104, 5467-
- 214 5472
- 215
- 216 23.Hendricks, S.B. & Borthwick, H.A. (1959). Photocontrol of plant development by the
- 217 simultaneous excitations of two interconvertible pigments. *Proc. Natl. Acad. Sci. USA*, 45, 344–
 218 349
- 219
- 220 24.Hildebrand, D.F., Brown, G.C., Jackson, D.M. & Hamilton-Kemp, T.R. (1993). Effects of
- some leaf-emitted volatile compounds on aphid population increase. J. Chem. Ecol., 19, 1875–
 1887
- 223
- 224 25.Himanen, S.J., Blande, J.D., Klemola, T., Pulkkinen, J., Heijari, J. & Holopainen, J.K. (2010).
- 225 Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants--a
- 226 mechanism for associational herbivore resistance? New Phytol., 186, 722-732
- 227
- 228 26.Holmes, M.G. & Smith, H. (1975). The function of phytochrome in plants growing in the
- 229 natural environment. Nature, 254, 512-514
- 230
- 231 27.Hua, J. & Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a
- 232 receptor gene family in Arabidopsis thaliana. Cell, 94, 261–271
- 233
- 234 28. Jenkins, G.I. (2017). Photomorphogenic responses to ultraviolet-B light. Plant. Cell Environ.,
- 235 40, 2544–2557

- 236
- 237 29.Karban, R. (2007). Experimental clipping of sagebrush inhibits seed germination of
- 238 neighbours. Ecol. Lett., 10, 791-797
- 239
- 240 30.Karban, R., Baldwin, I.T., Baxter, K.J., Laue, G. & Felton, G.W. (2000). Communication
- 241 between plants: induced resistance in wild tobacco plants following clipping of neighboring
- 242 sagebrush. Oecologia, 125, 66–71
- 243
- 244 31.Karban, R., Huntzinger, M. & McCall, A.C. (2004). The specificity of eavesdropping on
- 245 sagebrush by other plants. *Ecology*, 85, 1846–1852
- 246
- 247 32.Karban, R., Maron, J., Felton, G.W., Ervin, G. & Eichenseer, H. (2003). Herbivore damage to

sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos,

- 248 sagebrush i 249 2, 325–332 250
- 251 33.Karban, R., Shiojiri, K. & Ishizaki, S. (2010). An air transfer experiment confirms the role of 252 volatile cues in communication between plants. *Am. Nat.*, 176, 381–384
- 253
- 254 34.Kasperbauer, M. (1971). Spectral distribution of light in a tobacco canopy and effects of end-
- 255 of-day light quality on growth and development. Plant Physiol., 47, 775-778
- 256
- 257 35.Kegge, W., Ninkovic, V., Glinwood, R., Welschen, R.A.M., Voesenek, L.A.C.J. & Pierik, R.
- 258 (2015). Red:far-red light conditions affect the emission of volatile organic compounds from
- 259 barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann.
- 260 Bot., 115, 961-970
- 261
- 262 36.Kegge, W. & Pierik, R. (2009). Biogenic volatile organic compounds and plant competition.
- 263 Trends Plant Sci., 15, 126–132
- 264
- 265 37.Kessler, A., Halitschke, R., Diezel, C. & Baldwin, I.T. (2006). Priming of plant defense
- 266 responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.
- 267 Oecologia, 148, 280-292
- 268
- 269 38.Lee, H.-J., Park, Y.-J., Ha, J.-H., Baldwin, I.T. & Park, C.-M. (2017). Multiple routes of light
- 270 signaling during root photomorphogenesis. Trends Plant Sci., 22, 803-812
- 271
- 272 39.Mawphlang, O.I.L. & Kharshiing, E. V. (2017). Photoreceptor-mediated plant growth
- 273 responses: implications for photoreceptor engineering toward improved performance in crops.
- 274 Front. Plant Sci., 8, 1181
- 275
- 276 40.Moller, S.G., Kim, Y.S., Kunkel, T. & Chua, N.H. (2003). PP7 is a positive regulator of blue
- 277 light signaling in Arabidopsis. *Plant Cell*, 15, 1111–1119
- 278
- 279 41.Morrell, K. & Kessler, A. (2017). Plant communication in a widespread goldenrod: keeping
- 280 herbivores on the move. Funct. Ecol., 31, 1049–1061
- 281

- 282 42. Muroi, A., Ramadan, A., Nishihara, M., Yamamoto, M., Ozawa, R., Takabayashi, J., et al.
- 283 (2011). The composite effect of transgenic plant volatiles for acquired immunity to herbivory 284 caused by inter-plant communications. *PLoS One*, 6, e24594
- 285
- 43.Myers, J.H. & Williams, K.S. (1984). Does tent caterpillar attack reduce the food quality of red alder foliage? *Oecologia*, 62, 74–79
- 288
- 289 44.Ninkovic, V. (2003). Volatile communication between barley plants affects biomass
- 290 allocation. J. Exp. Bot., 54, 1931–1939
- 291
- 292 45.Oluwafemi, S., Dewhirst, S.Y., Veyrat, N., Powers, S., Bruce, T.J.A., Caulfield, J.C., et al.
- 293 (2013). Priming of defence volatile organic compound production in maize by the natural plant 294 activator cis-jasmone. *PLoS One*, 8, e62299
- 295
- 296 46.Paschold, A., Halitschke, R. & Baldwin, I.T. (2006). Using "mute" plants to translate
- 297 volatile signals. *Plant J.*, 45, 275–291
- 298
- 299 47.Pearse, I.S., Hughes, K., Shiojiri, K., Ishizaki, S. & Karban, R. (2013). Interplant volatile
- 300 signaling in willows: revisiting the original talking trees. Oecologia, 172, 869-75
- 301
- 302 48.Pearse, I.S., Porensky, L.M., Yang, L.H., Stanton, M.L., Karban, R., Bhattacharyya, L., et al.
- 303 (2012). Complex consequences of herbivory and interplant cues in three annual plants. *PLoS* 304 *One*, 7, e38105
- 305
- 306 49.Peng, J., van Loon, J.J. a, Zheng, S. & Dicke, M. (2011). Herbivore-induced volatiles of
- 307 cabbage (*Brassica oleracea*) prime defence responses in neighbouring intact plants. *Plant Biol.*, 308 13, 276–84
- 309
- 310 50.Pierik, R., Mommer, L. & Voesenek, L.A. (2012). Molecular mechanisms of plant
- 311 competition: neighbour detection and response strategies. Funct. Ecol., 27, 841-853
- 312
- 313 51.Pierik, R. & de Wit, M. (2014). Shade avoidance: phytochrome signalling and other
- 314 aboveground neighbour detection cues. J. Exp. Bot., 65, 2815–24
- 315
- 316 52.Ramadan, A., Muroi, A. & Arimura, G.-I. (2011). Herbivore-induced maize volatiles serve as
- 317 priming cues for resistance against post-attack by the specialist armyworm *Mythimna separata*.
- 318 J. Plant Interact., 6, 1550158
- 319
- 320 53. Rhoades, D.F. (1983). Responses of alder and willow to attack by tent caterpillars and
- 321 webworms: evidence for pheromonal sensitivity of willows. In: Plant Resistance to Insects (ed.
- 322 Hedin, P.). American Chemical Society, Washington, D.C., USA, pp. 55-68
- 323
- 324 54.Rodriguez-Saona, C., Crafts-Brandner, S.J., Paré, P.W. & Henneberry, T.J. (2001).
- 325 Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol., 27,
- 326 679-695
- 327

- 328 55.Rodriguez-Saona, C.R., Rodriguez-Saona, L.E. & Frost, C.J. (2009). Herbivore-induced
- 329 volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling.
- 330 J. Chem. Ecol., 35, 163–175
- 331
- 332 56.Savchenko, T., Pearse, I.S., Ignatia, L., Karban, R. & Dehesh, K. (2013). Insect herbi qvores
- selectively suppress the HPL branch of the oxylipin pathway in host plants. *Plant J.*, 73, 653–
 662
- 335
- 336 57.Schmitt, J. (1997). Is photomorphogenic shade avoidance adaptive? Perspectives from
- 337 population biology. Plant Cell Environ., 20, 826-830
- 338
- 339 58.Schmitt, J., Mccormac, A.C. & Harry, S. (1995). A test of the adaptive plasticity hypothesis
- 340 using transgenc and mutatnt plant s Disabled in Phytochrome-Mediated Elongation Responses to
- 341 Neighbors Author (s): Johanna Schmitt, Alex C. McCormac and Harry Smith Published by :
- 342 The University of Chicago P. Am. Nat., 146, 937–953
- 343
- 344 59.Schuman, M.C., Valim, H.A. & Joo, Y. (2016). Temporal dynamics of plant volatiles:
- 345 mechanistic bases and functional consequences. In: *Deciphering Chemical Language of Plant*
- 346 *Communication* (eds. Blande, J.D. & Glinwood, R.). Springer, Switzerland, pp. 3–34
- 347
- 348 60.Sessa, G., Carabelli, M., Sassi, M., Ciolfi, A., Possenti, M., Mittempergher, F., et al. (2005).
- 349 A dynamic balance between gene activation and repression regulates the shade avoidance
- 350 response in Arabidopsis. Genes, 19, 2811–2815
- 351
- 352 61.Shiojiri, K. & Karban, R. (2008a). Seasonality of herbivory and communication between
- 353 individuals of sagebrush. Arthropod. Plant. Interact., 2, 87-92
- 354
- 355 62. Shiojiri, K. & Karban, R. (2008b). Vascular Systemic Induced Resistance For Artemisia cana
- and Volatile Communication for Artemisia douglasiana. *Am. Midl. Nat.*, 159, 468–477
- 358 63.Smith, H. (1982). Light quality, photoperception, and plant strategy. Annu. Rev. Plant
- 359 Physiol., 33, 481-518
- 360
- 64.Smith, H. (2000). Phytochromes and light signal perception by plants--an emerging synthesis.
 Nature, 407, 585–591
- 363
- 364 65.Till-Bottraud, I. & Villemereuil, P. de. (2015). Kin recognition or phenotype matching? *New* 365 *Phytol.*, 2019, 13–14
- 366
- 367 66.Ton, J., D'Alessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., et al. (2007). Priming
- 368 by airborne signals boosts direct and indirect resistance in maize. *Plant J.*, 49, 16–26 369
- 370 67. Tscharntke, T., Thiessen, S., Dolch, R. & Boland, W. (2001). Herbivory, induced resistance,
- and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol., 29, 1025–1047
- 372
- 373 68. Wang, Q., Zuo, Z., Wang, X., Gu, L. & Yoshizumi, T. (2016). Photoactivation and

- 374 inactivation mechanisms of Arabidopsis cryptochrome 2, 354, 1–13
- 375
- 69.Yang, Z., Liu, B., Su, J., Liao, J., Lin, C. & Oka, Y. (2017). Cryptochromes orchestrate
 transcription regulation of diverse blue light responses in plants. *Photochem. Photobiol.*, 93,
- 112–127 378
- 379