Electronic supplementary information (ESI) for

"Release and catch" catalysis by tungstate species for the oxidative cleavage of olefins

Yu Yoshimura, Yoshiyuki Ogasawara,* Kosuke Suzuki, Kazuya Yamaguchi* and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

E-mail: tmizuno@mail.ecc.u-tokyo.ac.jp, kyama@appchem.t.u-tokyo.ac.jp, ogasawara@appchem.t.u-tokyo.ac.jp.

Data of oxidized products

6-Oxo-heptanoic acid (2a) (CAS No. 3128-07-2)^{S1,S2}

СООН

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (18.6 min). MS (EI): m/z (%): 144 (1) [M^+], 126 (35), 111 (10), 101 (32), 98 (26), 84 (25), 83 (25), 73 (30), 71 (16), 69 (14), 59 (21), 58 (97), 57 (10), 56 (25), 55 (100). ¹H NMR (500 MHz, CDCl₃, TMS): δ 1.58-1.68 (m, 4H), 2.16 (s, 3H), 2.33-2.42 (m, 2H), 2.43-2.54 (m, 2H), 7.35-9.38 (brs, 1H). ¹³C {¹H} NMR (125 MHz, CDCl₃, TMS): δ 23.1, 24.1, 30.0, 33.8, 43.3, 179.2, 209.3.

1-Methyl-1,2-cyclohexanediol (4a) (CAS No. 6296-84-0)^{S1,S3}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (12.7 min). MS (EI): m/z (%): 130 (7) [M^+], 112 (22), 97 (26), 84 (16), 83 (12), 71 (100), 70 (47), 69 (23), 68 (10), 58 (43), 57 (26), 56 (12), 55 (24).

Adipic acid (2b) (CAS No. 124-04-9)^{S1,S4}

ноос СООН

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (40 °C, 3 min), final column temp. (250 °C, 20 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection

temperature (250 °C), retention time (34.2 min). MS (EI): *m/z* (%): 128 (5), 100 (100), 87 (30), 82 (13), 73 (25), 69 (34), 60 (39), 58 (11), 56 (11), 55 (56), 54 (14).

Benzoic acid (2c) (CAS No. 65-85-0)^{S1,S4,S5}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (17.7 min). MS (EI): m/z (%): 122 (84) [M^+], 105 (100), 77 (76), 51 (34), 50 (20).

Benzaldehyde (CAS No. 100-52-7)^{S1,S4,S6}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (8.2 min). MS (EI): m/z (%): 106 (98) [M^+], 105 (95), 78 (17), 77 (100), 52 (12), 51 (47), 50 (26).

1-Phenylethane-1,2-diol (CAS No. 93-56-1)^{S1,S4,S6}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (18.7 min). MS (EI): m/z (%): 138 (2) [M^+], 120 (21), 107 (37), 106 (30), 105 (35), 104 (12), 92 (26), 91 (100), 79 (32), 78 (16), 77 (60), 65 (25), 63 (12), 51 (34), 50 (18).

Acetophenone (2d) (CAS No. 98-86-2)^{S1,S4,S7}

GC (InertCap 5 capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (280 °C, 8 min), progress rate (10 °C·min⁻¹), injection temperature (280 °C), detection temperature (280 °C), retention time (5.6 min). MS (EI): m/z (%): 120 (34) [M^+], 105 (100), 77 (79), 51 (28), 50 (11).

2-Phenylpropionaldehyde (CAS No. 93-53-8)^{S1,S4,S8}

GC (InertCap 5 capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (280 °C, 8 min), progress rate (10 °C·min⁻¹), injection temperature (280 °C), detection temperature (280 °C), retention time (6.1 min). MS (EI): m/z (%): 134 (12) [M^+], 106 (11), 105 (100), 103 (15), 79 (23), 77 (21), 51 (10).

Heptanoic acid (2e) (CAS No. 111-14-8)^{S1,S4,S9}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (12.9 min). MS (EI): m/z (%): 130 (0.2) [M^+], 101 (7), 87 (24), 73 (50), 71 (33), 70 (17), 61 (12), 60 (100), 55 (29).

Heptanal (CAS No. 111-71-7)^{S1,S4,S10}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (3.8 min). MS (EI): m/z (%): 114 (1) [M^+], 96 (14), 86 (18), 81 (28), 72 (12), 71 (30), 70 (100), 68 (19), 67 (11), 57 (55), 55 (64).

Hexanoic acid (2f) (CAS No. 142-62-1)^{S1,S4,S11}

СООН

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (11.8 min). MS (EI): m/z (%): 87 (15), 73 (49), 61 (10), 60 (100), 57 (10), 56 (11), 55 (15).

Hexanal (CAS No. 66-25-1)^{S1,S4,S12}

GC (InertCap FFAP capillary column, 0.25 mm \times 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature

(250 °C), retention time (2.9 min). MS (EI): *m/z* (%): 100 (0.5) [*M*⁺], 82 (21), 72 (27), 71 (11), 67 (15), 58 (12), 57 (66), 56 (100), 55 (22).

Phenylacetic acid (CAS No. 103-82-2)^{S1,S13}

GC (InertCap FFAP capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (250 °C, 6 min), progress rate (10 °C·min⁻¹), injection temperature (250 °C), detection temperature (250 °C), retention time (18.7 min). MS (EI): m/z (%): 136 (35) [M^+], 92 (21), 91 (100), 65 (18).

Phthalic acid (2h) (CAS No. 88-99-3)

HPLC (Inertsil ODS-3 column, 4.6 mm × 250 mm, GL Science Inc.): eluent (CH₃OH/H₂O, 9/1 v/v, 0.4 mL·min⁻¹), oven temp. (40 °C), retention time (7.7 min).

1,4-Naphthoquinone (CAS No. 130-15-4)

HPLC (Inertsil ODS-3 column, 4.6 mm × 250 mm, GL Science Inc.): eluent (CH₃OH/H₂O, 9/1 v/v, 0.4 mL·min⁻¹), oven temp. (40 °C), retention time (9.3 min).

2,3-Naphthalenedicarboxylic acid (2i) (CAS No. 2169-87-1)

HPLC (Inertsil ODS-3 column, 4.6 mm × 250 mm, GL Science Inc.): eluent (CH₃OH/H₂O, 9/1 v/v, 0.4 mL·min⁻¹), oven temp. (40 °C), retention time (25.6 min).

Anthraquinone (CAS No. 84-65-1)^{S1,S4,S14}

GC (InertCap 5 capillary column, 0.25 mm × 30 m, GL Science Inc.): initial column temp. (80 °C, 2 min), final column temp. (280 °C, 8 min), progress rate (10 °C·min⁻¹), injection temperature (280 °C), detection temperature (280 °C), retention time (20.1 min). MS (EI): m/z (%): 209 (17), 208 (96) [M^+], 207 (13), 181 (13), 180 (90), 153 (12), 152 (100), 151 (47), 150 (24), 126 (14), 77 (11), 76 (52), 75 (22), 74 (18), 63 (13), 50 (33).

Additional references

- S1 Spectral data were obtained from Wiley Subscription Services, Inc. (US).
- S2 F. Foubelo, F. Lloret and M. Yus, *Tetrahedron*, 1992, 48, 9531.
- S3 C. Döbler, G. M. Mehltretter, U. Sundermeier and M. Beller, J. Am. Chem. Soc., 2000, 122, 10289.
- S4 SDBSWeb, http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, accessed January 2017).
- S5 N. Tada, K. Hattori, T. Nobuta, T. Miura and A. Itoh, *Green Chem.*, 2011, 13, 1669.
- S6 A. Wang and H. Jiang, J. Org. Chem., 2010, 75, 2321.
- S7 P. B. Brondani, H. M. Dudek, C. Martinoli, A. Mattevi and M. W. Fraaije, J. Am. Chem. Soc., 2014, 136, 16966.
- S8 Y.-D. Du, C.-W. Tse, Z.-J. Xu, Y. Liu and C.-M. Che, Chem. Commun., 2014, 50, 12669.
- S9 S. Bernhardt, A. Metzger and P. Knochel, *Synthesis*, 2010, 3802.
- S10 M. E. González-Núñez, R. Mello, A. Olmos, R. Acerete and G. Asensio, J. Org. Chem., 2006, 71, 1039.
- S11 A. Botezatu, B. S. Kemp and G. J. Pickering, *Molecules*, 2016, 21, 1238.
- S12 J. K. Patra, G. Das and K.-H. Baek, *Molecules*, 2015, 20, 12093.
- M. S. Gachet, O. Kunert, M. Kaiser, R. Brun, R. A. Muñoz, R. Bauer and W. Schühly, *J. Nat. Prod.*, 2010, 73, 553.
- S14 K. S. Jang, H. Y. Shin and D. Y. Chi, Tetrahedron, 2008, 64, 5666.

Fig. S1 CSI-mass spectra (negative-ion mode) of the reaction filtrates and their assignments. Reaction conditions: 'BuOH (1.5 mL), 30% aqueous H₂O₂ (2.5 mmol), 80 °C, 1 h, (a) WO₃ (50 μ mol), and (b) W/Zn–SnO₂ (100 mg). The signal sets at *m/z* 280.9, 282.9, 296.9, 298.9, 300.9, 544.9, 600.9, 808.8, and 1072.7 were assignable to [HWO₂(O₂)₂]⁻, [H₃WO₄(O₂)]⁻, [HWO(O₂)₃]⁻, [H₃WO₃(O₂)₂]⁻, [H₅WO₅(O₂)]⁻, [HW₂O₃(O₂)₄]⁻, [W₂O₂(O₂)₄O'Bu]⁻, [HW₃O₄(O₂)₆]⁻, and [HW₄O₅(O₂)₈]⁻, respectively.

Fig. S2 Raman spectrum of the precipitate obtained after the reaction in Fig. 1 (see Fig. 1c).

Fig. S3 CSI-mass spectrum (negative-ion mode) of the filtrate of the solution after the reaction for entry 2, Table 1. The signal set at m/z 1408.6 was assignable to $[HW_6O_{19}]^-$.

Fig. S4 XRD patterns of (a) W/SnO_2 , (b) SnO_2 , and (c) W/SiO_2 and (d) SiO_2 .

Fig. S5 Raman spectra of (a) W/SnO_2 , (b) SnO_2 , and (c) W/SiO_2 and (d) SiO_2 .

Fig. S6 XRD patterns of (a) W/Zn–SnO₂, (b) Zn–SnO₂, and (c) SnO₂.

Fig. S7 Raman spectra of (a) W/Zn–SnO₂, (b) Zn–SnO₂, and (c) SnO₂. The spectrum of Zn–SnO₂ has a signal at 1050 cm⁻¹ which is assignable to the ν (NO₃⁻) vibration derived from Zn(NO₃)·6H₂O.

Fig. S8 Reaction profile for the W/Zn–SnO₂-catalyzed oxidative cleavage of **3a** into **2a** using H₂O₂ as the oxidant. Reaction conditions: **3a** (0.5 mmol), W/Zn–SnO₂ (100 mg, W: 10 mol% with respect to **3a**), 30% aqueous H₂O₂ (2.0 mmol), 'BuOH (1.5 mL), H₂O (2.2 mmol), and 80 °C. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard.

Fig. S9 Reaction profile for the W/Zn–SnO₂-catalyzed oxidative cleavage of **4a** into **2a** using H₂O₂ as the oxidant. Reaction conditions: **4a** (0.5 mmol), W/Zn–SnO₂ (100 mg, W: 10 mol% with respect to **3a**), 30% aqueous H₂O₂ (2.0 mmol), 'BuOH (1.5 mL), H₂O (2.2 mmol), and 80 °C. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard.

Fig. S10 Reaction profile for the W/Zn–SnO₂-catalyzed oxidative cleavage of **6a** into **2a** using H_2O_2 as the oxidant. Reaction conditions: **2a** (0.5 mmol), W/Zn–SnO₂ (100 mg, W: 10 mol% with respect to **3a**), 30% aqueous H_2O_2 (2.0 mmol), 'BuOH (1.5 mL), H_2O (2.2 mmol), and 80 °C. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard.

Entry	Support	Decomposition of H_2O_2 (%)
1	SnO ₂	4
2	SiO ₂	3
3	Al ₂ O ₃	60
4	ZrO ₂	>99
5	TiO ₂	>99
6	ZnO	>99
7	MgO	>99

Table S1 Decomposition of H₂O₂ in the presence of various supports^a

^{*a*} Reaction conditions: Support (100 mg), 30% aqueous H_2O_2 (2.5 mmol), 'BuOH (1.5 mL), 80 °C, 1 h. The amounts of remaining H_2O_2 were determined by Ce^{3+/4+} titration.

Table S2 Effect of reaction temperatures on the W/Zn-SnO₂-catalyzed oxidative cleavage of 1a with H₂O₂^a

	$\frac{W/Zn-1}{H_2O_2, t_2}$	SnO ₂ O BuOH COO 2a	ЭН
Entry	Temperature (°C)	Yield (%)	Tungsten leaching (%)
1	60	34	8
2	70	65	3
3	80	83	<1
4	90	75	<1

^{*a*} Reaction conditions: **1a** (0.5 mmol), W/Zn–SnO₂ (W: 9.1 wt%, Zn: 0.7 wt%, 125 mg), 30% aqueous H_2O_2 (2.5 mmol), 'BuOH (1.5 mL), 24 h. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard. Tungsten leaching was determined by ICP-AES analysis.

	$\frac{W/Zn-S}{H_2O_2, S}$	$\frac{\text{SnO}_2}{30 \text{ °C}}$	ЭН
	1a	2a	
Entry	Solvent	Yield (%)	Tungsten leaching (%)
1	^t BuOH	83	<1
2	CH ₃ CN	85	2
3	EtOAc	47	<1
4	DMC	35	<1
5	H ₂ O	30	6

Table S3 Effect of solvents on the W/Zn–SnO₂-catalyzed oxidative cleavage of 1a with $H_2O_2^a$

^{*a*} Reaction conditions: **1a** (0.5 mmol), W/Zn–SnO₂ (W: 9.1 wt%, Zn: 0.7 wt%, 125 mg), 30% aqueous H_2O_2 (2.5 mmol), solvent (1.5 mL), 80 °C, 24 h. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard. Tungsten leaching was determined by ICP-AES analysis.

Table S4 Effect of the amounts of supported zinc species on the W/Zn–SnO₂-catalyzed oxidative cleavage of 1a with $H_2O_2^a$

	W/Zn-S H ₂ O ₂ , ⁴ E 80 °C	BnO ₂ → O BuOH → COO 2a	ЭН
Entry	Zn loading (wt%)	Yield (%)	Tungsten leaching (%)
1	0	62	<1
2	0.4	65	<1
3	0.7	83	<1
4	0.9	87	<1
5	1.1	83	<1
6	1.5	30	<1

^{*a*} Reaction conditions: **1a** (0.5 mmol), W/Zn–SnO₂ (W: 9.1 wt%, 125 mg), 30% aqueous H₂O₂ (2.5 mmol), 'BuOH (1.5 mL), 80 °C, 24 h. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard. Tungsten leaching was determined by ICP-AES analysis.

Table S5 Effect of the amounts of supported tungsten species on the W/Zn–SnO₂-catalyzed oxidative cleavage of **1a** with $H_2O_2^a$

	W/Zn–S H ₂ O ₂ , /B 80 °C	BnO ₂ O BuOH COO 2a	ЭН
Entry	W loading (wt%)	Yield (%)	Tungsten leaching (%)
1	0	<1	_
2	3.3	58	<1
3	6.3	61	<1
4	7.7	70	<1
5	9.1	87	<1
6	10.4	81	1
7	11.7	81	1

^{*a*} Reaction conditions: **1a** (0.5 mmol), W/Zn–SnO₂ (Zn: 0.9 wt%, 125 mg), 30% aqueous H₂O₂ (2.5 mmol), 'BuOH (1.5 mL), 80 °C, 24 h. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard. Tungsten leaching was determined by ICP-AES analysis.

	V H 1a 8	$\begin{array}{c} V/Zn-SnO_2 \\ I_2O_2, \ ^tBuOH \\ 0 \ ^\circ C \\ \end{array} \xrightarrow{O} \begin{array}{c} O \\ I_2O_2 \\ 2a \end{array}$	юон
Entry	Amount of the catalyst (mg)	Yield (%)	Tungsten leaching (%)
1	0	<1	-
2	50	95	5
3	75	89	1
4	100	92	<1
5	125	87	<1
6	150	83	<1

Table S6 Effect of the amounts of W/Zn–SnO₂ on the oxidative cleavage of 1a with $H_2O_2^a$

^{*a*} Reaction conditions: **1a** (0.5 mmol), W/Zn–SnO₂ (W: 9.1 wt%, Zn: 0.9 wt%), 30% aqueous H₂O₂ (2.5 mmol), 'BuOH (1.5 mL), 80 °C, 24 h. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard. Tungsten leaching was determined by ICP-AES analysis.

$\begin{array}{c c} \hline & Cat., H_2O_2 \\ \hline & & \\ \hline \\ \hline$									
1a			2a		Ba	4a	5a		6a
	Cat.	Time (h)	Conv. (%)	Yield (%	Yield (%)				
Entry)	2	4	5a	6a	TBHP
				2 a	38	48			(mmol)
1		0.5	88	4	2	20	5	8	0.11
2	W/SnO_2	4	>99	36	<1	15	10	10	0.38
3		24	>99	64	<1	10	<1	7	0.58
4		0.5	76	3	1	25	8	3	0.03
5	W/Zn-SnO ₂	4	>99	44	<1	18	21	2	0.07
6		24	>99	92	<1	3	<1	<1	0.14

Table S7 Detailed comparison of W/SnO2 and W/Zn–SnO2 for the oxidative cleavage reaction of 1a into $2a^a$

^{*a*} Reaction conditions: **1a** (0.5 mmol), Catalyst (100 mg, W: 10 mol% with respect to **1a**), 30% aqueous H_2O_2 (2.5 mmol), 'BuOH (1.5 mL), 80 °C. Yields were determined by GC analysis using *o*-dichlorobenzene as an internal standard.