Electronic Supplementary Information for

## Pulse laser deposited n-Si/NiO<sub>x</sub> photoanodes for stable and

## efficient photoelectrochemical water splitting

Lingyun He,<sup>a</sup> Wu Zhou,<sup>a</sup> Dongping Cai,<sup>a</sup> Samuel S. Mao,<sup>bc</sup> Ke Sun\*de and Shaohua Shen\*af

<sup>a</sup>International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. E-mail addresses: shshen\_xjtu@mail.xjtu.edu.cn.

<sup>b</sup>Samuel Mao Institute of New Energy, Shenzhen, Guangdong 518031, China.

<sup>c</sup>Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.

<sup>d</sup>Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125, USA.

<sup>e</sup>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. E-mail addresses: kesun@caltech.edu.

<sup>f</sup>Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, China.



Fig. S1. Grazing incidence XRD patterns of the n-Si and n-Si/NiO<sub>x</sub> films.



**Fig. S2.** (a-c) The electrochemical activation behaviors of NiO<sub>x</sub> deposited n-Si by PLD with different thickness (a: 1000 s, b: 3000 s and c: 5000 s). (d) Tafel plots of the n-Si/NiO<sub>x</sub> (5000 s) photoanode with different activation scan cycles. (e) The Ni 2p XPS spectra of the n-Si/NiO<sub>x</sub> (5000 s) photoanode before and after electrochemical activation. All CV measurements (20 mV s<sup>-1</sup>) were scanned in 1.0 M NaOH (aq) at room temperature.



**Fig. S3.** Chronoamperometry of an n-Si/NiO<sub>x</sub> (5000 s) photoanode held at 2 V vs. RHE in 1.0 M NaOH (aq). The illumination intensity was 1.0 Sun.