Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

1	Supporting information
2 3	Modulating the methanation activity of Ni by the crystal phase of TiO_2
4	Yaping Lin ^{a,b} , Yifeng Zhu ^a , Xiulian Pan ^{*,a} , Xinhe Bao ^{*,a}
5 6	^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
7	E-mail: panxl@dicp.ac.cn; xhbao@dicp.ac.cn
8	^b University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049,
9	China.
10 11 12	
13	
14 15	
16	
17	
18	
19	
20	

- 2 Figure S1. XRD patterns of Ni/a-TiO₂ and Ni/r-TiO₂ catalysts before and after
- 3 reaction test in Figure 1c.

Table S1. Surface areas of TiO_2 and the corresponding Ni/TiO₂ catalysts.

Sample	$S_{BET}(m^2 \cdot g^{-1})$
a-TiO ₂	96.3
r-TiO ₂	51.7
Ni/a-TiO ₂	61.7
Ni/r-TiO ₂	28.4

- 2 Figure S2. XRD patterns of the freshly prepared $NiO/a-TiO_2$ and $NiO/r-TiO_2$.
- 3

1

4 **Table S2.** The particle size of NiO in the fresh catalysts.

Sample	^a NiO (nm)
NiO/a-TiO ₂	18.6
NiO/r-TiO ₂	18.1

^a The NiO particle size in the fresh catalysts, estimated from XRD.

1 Table S3. The amount of H₂ adsorbed over Ni/a-TiO₂ and Ni/r-TiO₂ catalysts.

Sample	^a H ₂ adsorption amount (mmol)		
Ni/a-TiO ₂	0.0089		
Ni/r-TiO ₂	0.0161		
^a : The catalyst mass is 401.0 mg.			

^	1
	1
4	

The dispersity of Ni nanoparticles is estimated according to H₂-TPD $\binom{D_{H_2-TPD}}{}$ by the following equations¹:

5

$$D_{H_2 - TPD} = \frac{N_H}{N_{Ni}}$$

$$N_{Ni} = \frac{m \cdot c}{M}$$

7 Where N_H is the mole number of H atoms measured from H₂-TPD; N_{Ni} is the total 8 mole number of Ni; *m* is the mass of fresh catalysts, 401.0 mg and c is the Ni loading 9 in the fresh catalysts; *M* is the atomic weight of Ni, 58.69 g·mol⁻¹.

10 The dispersity of Ni nanoparticles $({}^{D}_{XRD})$ was estimated by assuming Ni 11 nanoparticle as a sphere, following the equations: ¹

$$D_{XRD} = \frac{n_s}{n} = \frac{4 \pi \cdot R^2 \cdot a_m}{\frac{4\pi}{3} R^3 \cdot \rho_0}$$
12
13
$$R = \frac{d}{2}$$

Where n_s is the number of Ni atoms on the surface of the sphere; n is the total number of Ni atoms in the sphere; d is the mean diameter of Ni nanoparticles obtained from XRD; a_m is the number of surface Ni atoms per unit m², which is $1.54 \times 10^{19} m^{-2}$ calculated for fcc Ni using the proportions of low index planes fcc(111): $(100):(110)=1:1:1;^{1} \rho_0$ is the density of Ni, $8.902 \times 10^6 g \cdot m^{-3}$; N_A is Avogadro's constant, $6.02 \times 10^{23} mol^{-1}$; M is the atomic weight of Ni, $58.69 g \cdot mol^{-1}$. 1 TOF as defined as the CO converting per Ni site per time, is calculated by the 2 following equations:

$$TOF = \frac{CO \ conversion \ rate \ (mol \cdot g_{cat}^{-1} \cdot h^{-1})}{Numbers \ of \ surface \ Ni \ atoms \ (mol \cdot g_{cat}^{-1})}$$

$$= \frac{\frac{WHSV \times S_{CO} \times CO \ conversion}{V_m}}{Numbers \ of \ surface \ Ni \ atoms \ (mol \cdot g_{cat}^{-1})}$$
4

The numbers of surface Ni atoms were determined by H₂-TPD. S_{CO} is the volume fraction of CO in the feed gas, 23.75%; CO conversion is 20.0% for Ni/a-TiO₂ and 16.8% for Ni/r-TiO₂; V_m is the standard gas volume, 22400 ml/mol; WHSV is the total $6 \times 10^4 \text{ ml} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1}$ for Ni/a-TiO₂ is velocity, space which and $6 \times 10^6 \text{ ml} \cdot \text{g}_{\text{cat}}^{-1} \cdot \text{h}^{-1} \text{ for Ni/r-TiO}_2.$

- 6

- Figure S3. TEM images. (a) and (b) Ni/a-TiO₂; (c) and (d) Ni/r-TiO₂ after reaction at
- 500 °C. Reference 1. G. Bergeret and P. Gallezot, in Handbook of Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Wiley-VCH, 2008, pp. 738-765.