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1. Catalyst characterization

In this study, the powder X-ray diffraction (XRD) patterns were characterized on a Rigaku
D/max-2500 diffractometer. The H,-TPR was characterized by a Micromeritics ChemiSorb 2720
device. The sample (~50mg) was preheated in a N, flow at 350°C for 60min, then it was heated
in a 10 % Hy/He flow to make the temperature increased linearly from 50 to 1000 °C at a heating
rate of 10 Cmin™!. The depleted amount of H, was evaluated by the signal of a thermal
conductivity detector. NO+O,-TPD (temperature-programmed desorption) experiment consisted
of three steps: (1) sweep of the sample in N, at 350 °C for 1 h; (2) adsorption of NO for about 1
h by passing a gas mixture containing 500 ppm NO + 5% O, with N, as balance gas and the total
flow rate was 200 ml/min through the reactor at 100 °C; (3) TPD measurements were carried out
up to 600 °C at a heating rate of 10 °C /min with the total flow rate of 200 ml/min N,. The in-situ
DRIFTS experiments were conducted on a Nicolet 6700 FTIR spectrophotometer and a liquid
nitrogen-cooled MCT detector. Prior to each experiment, the sample was pretreated in N, flow at
400 °C for 1 h to remove the impurities. After decreasing temperature to 30 °C, the samples were
exposed to a NO + O, steam for 30 min and a N, flow for 10 min to remove the weakly adsorbed

NO,, then the spectra were collected after heating to each desired temperature.

2. CO,-TPD
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Fig. S1. CO,-TPD spectra of Sn(0.5)-Co-O and Co30;, catalysts prepared by different

precipitants.
3. NO oxidation performance
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Fig.S2 NO conversion over Sn(0.9)-Co-O catalyst. Reaction conditions: 0.15 g samples, 500
ppm NO, 10 % O,, N, balance, GHSV=3.5x10* h-!.

The Co30, catalyst showed good NO oxidation activity in a wide temperature range of 250-
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300 °C and the best performance was obtained at 300 °C. After addition of Sn, the NO oxidation
efficiency was not affected obviously comparing with Co3;O4, until the ratio of Sn/(Sn+Co)
reached to 0.5. Nevertheless. Meanwhile, the SnO, catalyst exhibited nearly no activity in NO
oxidation. As reported in literature, the NO oxidation reaction becomes thermodynamic
controlled at high temperatures ! 2. The activity decreased as the temperature increasing over all

of catalyts at >300 °C.

4. XRD analysis

The crystal structure of Sn-Co-O mixed metal oxides catalysts was determined by XRD and
the diffraction patterns are shown in Figure S2. For Cos;0, catalyst, it could be observed that
sharp diffraction peaks appeared which could be attributed to Co304. For Sn(0.25)-Co-O and
Sn(0.5)-Co-O catalysts, besides the peaks attributed to Co;0,4, new peaks correspond to rutile
SnO, of a tetragonal structure were presented. It indicated that two different crystal structure
were formed in these binary metal oxides catalysts.
5. Redox ability

The H,-TPR spectra of SnO,, Sn-Co-O and Co;0, catalysts are shown in Fig. S2. The Co;04
catalyst displayed two reduction peaks at 320°C and 400°C. According to the results of XRD
diffraction, only Co3;0, exists in Co;0, catalyst. Therefore, the reduction peak at 320°C can be
attributed to the reduction of the catalyst Co,0O5; to CoO and reduction peak at 400°C could be
assigned to CoO to cobalt in Cos;0,4. This is consistent with the two-step reduction process

reported in the literature 3. Pure SnO, catalyst displyed a overlapping reduction peaks at 480 ~
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760 °C, the peak may be attributed to the reduction of SnO, to SnO, then to tin* 3.
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Fig. S3. H,-TPR spectra of SnO,, Sn-Co-O , and Co30; catalysts.

With regard to Sn-Co-O catalysts, there were two overlapping reduction peaks in low
temperature range (300°C-400°C) and high temperature range (500°C-700°C) repectively. The
low temperature range peak can be attributed to the reduction of Co;04 and the peak at high
temperature range reduction could be ascribed to the reduction of SnO,. Compared with pure
Co304 catalyst, the reduction peak of Sn-Co-O at low-temperature range shift to high
temperature and became weaker with increasing Sn content, indicating that doping of Sn affected
the redox property of Co;04 6. Comparatively, the peak attributing to reduction of SnO; shifted to
lower temperature on Sn-Co-O catalyst than that on SnO,, indicating the redox property was
enhanced on these sample. On the other hand, superior NO oxidation activity was obtained over
the Sn(0.75)-Co-O catalyst, indicating that excellent redox property might be not essential in NO

oxidation. The NO adsorption behavior is also important in NO oxidation over Sn-Co-O catalysts.
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6. In-situ DRIFTS study
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Fig. S4. In-situ DRIFTS spectra of Sn(0.25)-Co-O (a) and Sn(0.5)-Co-O (b) after NO+O,
adsorption.
According to previous studies, the peaks attributed to bridged bidentate nitrates (at 1616
cm™!), monodentate nitrates (at 1560 cm™! and 1545 cm™!), bridging nitrates (at 1003-1008 cm™!),
and nitrite species (at 1286 cm™!) could be found over two catalysts.”” The peaks appeared at

1245-1270 cm™! could be attributed to nitrites/ HONO species.!% ! Raising the temperature from

100 to 350 °C, the intensity of nitrites decreased rapidly, while nitrates species decreased
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continuously and was totally eliminated at 350 °C over Sn(0.5)-Co-O catalyst.
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Fig. S5. In-situ DRIFTS spectra of Sn(0.75)-Co-O after NO adsorption.

7. NO oxidation stability test
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Fig. S6 Stability test of NO oxidation performance over Sn(0.75)-Co-O catalyst.
The NO oxidation stability test with a period of 720 min over Sn(0.75)-Co-O was performed
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and the results are shown in Fig. S6. It could be seen the catalytic activity was stable within the

test period.
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