Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols

Moataz Morad,^{a,b} Ewa Nowicka,^a Mark Douthwaite,^a Sarwat Iqbal,^a Peter Miedziak,^a Jennifer K. Edwards,^a Gemma L. Brett,^a Qian He,^a David Morgan,^a Hamed Alshammari,^{a,c} Donald Bethell,^a David W. Knight,^a Meenakshisundaram Sankar^{a*} and Graham J. Hutchings^{a**}

^aCardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT Cardiff, United Kingdom.

^bChemistry Department Faculty of Science, Umm al-qura University, PO Box 21955, 9264 Makkah, Saudi Arabia.

^cChemistry Department, Faculty of Science, Ha'il University, P. Box 2440, 81451 Ha'il, Saudi Arabia.

* Dr. Meenakshisundaram Sankar, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT (UK), Fax: (+44) 2920-874-030, E-mail: <u>sankar@cardiff.ac.uk</u>.

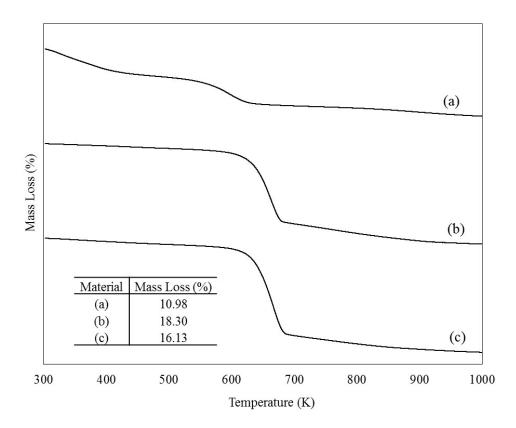
** Prof Graham J. Hutchings, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT (UK), Fax: (+44) 2920-874-030, E-mail: <u>hutch@cardiff.ac.uk</u>

Catalyst	Conversion	Product		
	(%)	Selectivity (%) [£]		
	-	3	1	
No Catalyst	-	-	-	
MgO Fresh	<1	-	99	
MgO Calcined	<1	-	99	
ZnO Fresh	<1	-	99	
ZnO Calcined	<1	-	99	
La ₂ O ₃ – Fresh	<1	16	-	
La ₂ O ₃ – Calcined	<1	18	43	
Al ₂ O ₃ - Fresh	23	84	-	
Al ₂ O ₃ - Calcined	13	80	-	
TiO ₂ - Fresh	20	98	-	
TiO ₂ - Calcined	33	98	-	

Table S1. Synthesis of 4-(4-methoxyphenyl)but-3-ene-2-one (3) from 4-methoxybenzaldehyde(2) and acetone using different metal oxide catalysts.

Reaction conditions: 4-methoxybenzaldehyde: 1.3g; acetone: 6.3g; mesitylene (internal standard): 1g; catalyst: 0.5g, T: 348K; time: 1h. [a]: Selectivity is calculated based known and identified products and we have used a normalisation method based on these products. The C balance for these reactions were calculated to be between 70-80%. Remaining products are unidentified (20-30%).

 Table S2. Synthesis of 4-(4-methoxyphenyl)butan-2one (4) from 4-methoxybenzaldeyde (2)


 and acetone using supported metal bi-functional catalysts

Catalyst	Conv	Selectivity (%) ^[a]				
	(%)	1	3	4	5	6
1%Pd/TiO ₂	16	9	21	68	1	0
5%Pd/TiO ₂	100	1	0	0	0	99
1%AuPd/TiO ₂	63	62	1	16	4	16
1%AuPd/Al ₂ O ₃	7	67	3	27	0	2
1%AuPd/MgO	100	40	0	58	2	0
0.5%AuPd/MgO	100	31	0	61	7	0
0.5%Au/MgO	90	1	98	1	0	0
0.5%Pd/MgO	100	20	0	74	5	0

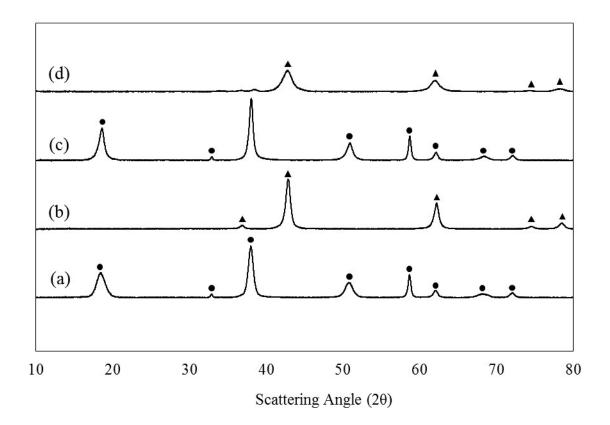

Reaction conditions: 4-methoxybenzaldehyde: 1.3g; acetone: 6.3g; mesitylene (internal standard): 1g; catalyst: 0.5g, pH_2 : 5 bar T: 348K; time: 1h. [a]: Selectivity is calculated based known and identified products and we have used a normalisation method based on these products. The C balance for these reactions were calculated to be between 70-80%. Remaining products are unidentified (20-30%).

Table S3. MP-AES analysis: the total metal weight loading of the fresh 1% AuPd/MgO catalyst.

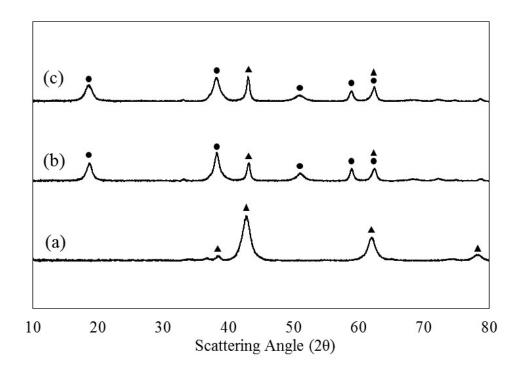

Total Metal Loading	Metal Load	ling (wt. %)	Molar Ratio (%)		
(wt. %)	Au	Pd	Au	Pd	
1.12	0.69	0.43	46.4	53.6	

Figure S1. Thermogravimetric analysis traces corresponding to (a) AuPd/MgO catalyst prior to reaction, (b) the used AuPd/MgO catalyst after the reaction with 4-methoxybenzyl alcohol under N_2 and (c) the used catalyst after the reaction with 4-methoxybenzyl alcohol under H_2 .

Figure S2. XRD data corresponding to (a) the $Mg(OH)_2$ support, (b) the MgO support formed from the $Mg(OH)_2$ after the first heat treatment, (c) sol-immobilised 1% $AuPd/Mg(OH)_2$, (d) sol immobilised 1% AuPd/MgO after heat treatment under N_2 . •: $Mg(OH)_2$, \blacktriangle : MgO phase.

Figure S3. XRD data corresponding to (a) AuPd/MgO catalyst prior to reaction, (b) the used AuPd/MgO catalyst after the reaction with 4-methoxybenzyl alcohol under H_2 and (c) the used catalyst after the reaction with 4-methoxybenzyl alcohol under N_2 . •: Mg(OH)₂ phase; \blacktriangle : MgO phase