Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

## **Electronic Supporting Information**

## Contents

- ✤ Figures S1-S4, the effect of temperature, water, time and [L]/[Rh] on hydroformylation of 1butene catalyzed by Rh(acac)(CO)<sub>2</sub>/ PPh<sub>2</sub>(NC<sub>4</sub>H<sub>4</sub>) at10 bar of syngas, 2 bar of 1-butene and 80 °C.
- ✤ Fig.S5. The effect of water on the hydroformylation of 1-butene catalyzed by Rh(acac)(CO)<sub>2</sub> modified with different ligands at 80 °C and 10 bar of syngas using autoclave 50 mL.
- ✤ 1H ,13C NMR data for post- reaction mixture.
- Table and Fig.S6. The effect of pressure on hydroformylation of 1-butene catalyzed by Rh(acac)(CO)<sub>2</sub>/ PPh(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub> at 8,6 and 4 bar, 80 °C in autoclave 100 mL. and the compare n/iso according to NMR and Fid-GC.
- ✤ Fig. S7- S9. <sup>1</sup>H NMR (CDCl<sub>3</sub>) of post-reaction mixture after the hydroformylation of 1butene catalyzed by Rh(acac)(CO)<sub>2</sub>/ PPh(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub> at 8,6 and 4 bar, 80 °C in autoclave 100 mL.
- ✤ Fig. S10- S11. <sup>31</sup>P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)<sub>2</sub>/ P(NC<sub>4</sub>H<sub>4</sub>)<sub>3</sub> and Rh(acac)(CO)<sub>2</sub>/ PPh(NC<sub>4</sub>H<sub>4</sub>)<sub>2</sub>, respectively, without(a) and with(b) addition little amount of water to NMR sample.
- ✤ Fig.S12. <sup>31</sup>P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)<sub>2</sub>/ PPh<sub>2</sub>(NC<sub>4</sub>H<sub>4</sub>) with addition, little amount of water to NMR sample.



Fig. S1. The effect of temperature on hydroformylation of 1-butene



Fig. S2. Effect of water on hydroformylation of 1-butene in toluene



Fig. S3. Effect of time on hydroformylation of 1-butene in toluene



Fig. S4. Effect of [L]/[Rh] ratio on hydroformylation of 1-butene



**Fig.S5**. The effect of water on the hydroformylation of 1-butene catalyzed by Rh(acac)(CO)<sub>2</sub> modified with different ligands at 80 °C and 10 bar of syngas using autoclave 50 mL.

## 1H,13C NMR data for post- reaction mixture:

**1-butene**: <sup>1</sup>H NMR (500 Hz, CDCl<sub>3</sub>)  $\delta$ (=CH) 5.78 ppm (dddd, 6.17, 6.81, 10.3, 17.1 Hz);  $\delta$ (=CH<sub>2</sub>) 4.9 ppm (dd, 17.2, 1.87Hz);  $\delta$ (=CH<sub>2</sub>) 4.82 ppm (dd, 10.2, 2Hz);  $\delta$ (CH<sub>3</sub>) 1.2 ppm (d, 7.24 Hz); <sup>13</sup>C NMR (500 Hz, CDCl<sub>3</sub>): 140.43, 113.04, 26.63, 17.72.

**2-butene**: <sup>1</sup>H NMR (500 Hz, CDCl<sub>3</sub>) δ(=CH<sub>2</sub>) 5.32 ppm (ddd, 1.4, 4.8, 3.36Hz); δ(=CH<sub>2</sub>) 5.36 ppm (ddd, 3.1, 7.9, 0.91Hz)

**Pentanal**: <sup>1</sup>H NMR (500 Hz, CDCl<sub>3</sub>): δ(CHO) 9.62 ppm (t, 1.86 Hz); δ(CH<sub>2</sub>) 2.29 ppm (ddd, 1.85, 7.38, 14.75 Hz); δ(CH<sub>2</sub>) 2.29 ppm (ddd, 1.85 Hz); δ(CH<sub>2</sub>) 1.5 ppm (dddd, 7.51Hz); ); δ(CH<sub>2</sub>) 1.26 ppm (ddddd, 7.57Hz); δ(CH<sub>3</sub>) 0.83 ppm (t, 7.46 Hz); <sup>13</sup>C NMR (500 Hz, CDCl<sub>3</sub>): 202.5, 43.53, 24.1, 22.24, 13.68.

**2-methylbutanal**: <sup>1</sup>H NMR (500 Hz, CDCl<sub>3</sub>): δ(CHO) 9.51 ppm (d, 1.88 Hz); <sup>13</sup>C NMR (500 Hz, CDCl<sub>3</sub>): 204.98, 47.67, 23.46, 12.71, 11.21.

**Table S1** the effect of pressure of syngas on n/iso ratio of hydrofrmylation of 1-butene catalyzedby  $Rh(acac)(CO)_2/PPh(NC_4H_4)_2$ 

| Entry | P, bar | Aldehydes, | n/iso (Fid- | n/iso(NMR) | TOF   |
|-------|--------|------------|-------------|------------|-------|
|       |        | mol        | GC)         |            |       |
| 1     | 8      | 0.018      | 22.5        | 27.5       | 600   |
| 2     | 6      | 0.017      | 24.2        | 34.4       | 566.7 |
| 3     | 4      | 0.007      | 20          | 38.8       | 233.3 |

Reaction condition:  $[Rh] = 1.5 \times 10^{-5} \text{mol}, [L]/[Rh] = 13, P_{1-Butene} = 2 \text{ bar}, P_{(H2:CO = 1:1)}, \text{ toluene } (0.5 \text{ ml}), \text{ cyclohexane } (0.25 \text{ mL}), t = 2h, T = 80 \text{ °C}.$ 



Fig.S6. The effect of pressure on hydroformylation of 1-butene catalyzed by  $Rh(acac)(CO)_2/PPh(NC_4H_4)_2$ 



**Fig.S7**. <sup>1</sup>H NMR (CDCl<sub>3</sub>) of post-reaction mixture after the hydroformylation of 1-butene at 8 bar, 80 °C.

а





**Fig.S8**. <sup>1</sup>H NMR (a) and 13C NMR (b) spectra (CDCl3) of post-reaction mixture after the hydroformylation of 1-butene at 6 bar, 80 C.



**Fig.S9**. <sup>1</sup>H NMR (CDCl<sub>3</sub>) of post-reaction mixture after the hydroformylation of 1-butene at 4 bar, 80 °C.



**Fig.S10**. <sup>31</sup>P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)<sub>2</sub>/ P(NC<sub>4</sub>H<sub>4</sub>)<sub>3</sub>, without(a) and with(b) addition little amount of water to NMR sample.

b



Fig.S11. <sup>31</sup>P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by  $Rh(acac)(CO)_2/PPh(NC_4H_4)_2$ , without(a) and with(b) addition little amount of water to NMR sample.



**Fig.S12**. <sup>31</sup>P NMR (CDCl3) of post-reaction mixture after the hydroformylation of catalyzed by Rh(acac)(CO)<sub>2</sub>/ PPh<sub>2</sub>(NC<sub>4</sub>H<sub>4</sub>) with addition, little amount of water to NMR sample.