## **Supporting Information**

## An investigation into support cooperativity for the deoxygenation of guaiacol over nanoparticle Ni and Rh<sub>2</sub>P

Michael B. Griffin, Frederick G. Baddour, Susan E. Habas, Connor P. Nash, Daniel A. Ruddy, Joshua A. Schaidle

Guaiacol conversion was calculated according to equation 1, where  $\dot{n}_{in,gua}$  and  $\dot{n}_{out,gua}$  represent the inlet and outlet molar flow rates of guaiacol, respectively.

$$Conversion = \frac{\dot{n}_{in,gua} - \dot{n}_{out,gua}}{\dot{n}_{in,gua}} * 100\%$$
(1)

The product selectivity was calculated separately for the C<sub>5</sub>+ products and by-products and each category totals 100%. These calculations were performed using equation 2, where  $\dot{n}_i$  represents the molar flow rate of C<sub>5</sub>+ product or by-product *i* and  $\sum \dot{n}_i$  is the total molar flow rate of either the C<sub>5</sub>+ products or the by-products.

$$Selectivity = \frac{\dot{n}_i}{\sum n_i} * 100$$
(2)

The H:C ratio was calculated according to equation 3, where  $\dot{n}_H$  and  $\dot{n}_C$  represent the molar flow rate of hydrogen and carbon contained in the C<sub>5</sub>+ products, which excludes unreacted guaiacol.

$$H:C\ ratio = \frac{\dot{n}_H}{\dot{n}_C} \tag{3}$$

The average carbon number was calculated according to equation 4, where  $\dot{n}_c$  and  $\dot{n}_{tot}$  represent the molar flow rate of carbon and the total molar flow rate of the C<sub>5</sub>+ products, which excludes unreacted guaiacol.

Average carbon number = 
$$\frac{\dot{n}_C}{\Sigma \dot{n}_{tot}}$$
 (4)

The C<sub>5</sub>+ product yield was calculated according to equation 5, where X represents guaiacol conversion,  $\dot{n}_i$  represents the molar flow rate of C<sub>5</sub>+ product *i*, and  $\sum \dot{n}_i$  is the combined molar flow rate of all C<sub>5</sub>+ products and by-products.

$$C_5 + product \ yield = X \frac{\dot{n}_i}{\sum \dot{n}_i}$$
(5)

The site time yield was calculated according to equation 6, where  $\dot{n}_{C5+}$  represents the molar flow rate of all C<sub>5</sub>+ products,  $H^*$  is H-adsorption site density per gram of Ni or Rh<sub>2</sub>P based on H<sub>2</sub> chemisorption analysis of the baseline C-supported catalysts,  $m_{cat}$  is the total catalyst mass, and  $wt\%_{AP}$  is the active phase loading.

Site time yield = 
$$\frac{\dot{n}_{C5+}}{H^* \times m_{cat} \times \frac{\text{wt\%}_{AP}}{100}}$$
(6)



Fig. S1.  $NH_3$ -TPD profiles for (a) C, (b) TiO<sub>2</sub>, (c)  $Al_2O_3$ , and (d) MgO prior to nanoparticle (NP) dispersion. Peak fitting of the  $Al_2O_3$  desorption trace was performed using a Gaussian model and is indicated by the blue dashed line.



Fig. S2. py-DRIFTS spectra for (a)  $TiO_2$  and (b)  $Al_2O_3$ . No pyridine adsorption was detected on C or MgO.



Fig. S3.  $CO_2$ -TPD profiles for (a) C, (b) TiO<sub>2</sub>, (c) Al<sub>2</sub>O<sub>3</sub>, and (d) MgO prior to NP dispersion.



Fig. S4. XRD patterns of (a) Ni/C, (b) Ni/TiO<sub>2</sub>, (c) Ni/Al<sub>2</sub>O<sub>3</sub>, and (d) Ni/MgO prepared by solution NP methods, with reference diffraction patterns.



Fig. S5. XRD data and reference pattern of the as-prepared Ni NPs.



Fig. S6. TEM Images of the as-prepared NPs used to prepare (a) Ni/C, (b) Ni/TiO<sub>2</sub> and Ni/Al<sub>2</sub>O<sub>3</sub>, (c) Ni/MgO, (d) Rh<sub>2</sub>P/C (e) Rh<sub>2</sub>P/TiO<sub>2</sub>, (f) Rh<sub>2</sub>P/Al<sub>2</sub>O<sub>3</sub>, and (g) Rh<sub>2</sub>P/MgO.



Fig. S7. TEM images of catalysts (a) Ni/C, (b) Ni/TiO<sub>2</sub>, (c) Ni/Al<sub>2</sub>O<sub>3</sub>, (d) Ni/MgO, (e)  $Rh_2P/C$ , (f)  $Rh_2P/TiO_2$ , (g)  $Rh_2P/Al_2O_3$ , and (h)  $Rh_2P/MgO$ .



Fig. S8. XRD patterns of supported catalysts (a)  $Rh_2P/C$ , (b)  $Rh_2P/TiO_2$ , (c)  $Rh_2P/AI_2O_3$ , and (d)  $Rh_2P/MgO$  prepared by solution NP methods, with reference diffraction patterns.

Table S1: The metal to phosphorus molar ratio of the as-prepared Rh<sub>2</sub>P catalysts determined by elemental analysis.

|                                                  | M:P ratio |  |
|--------------------------------------------------|-----------|--|
| Rh₂P/C                                           | 1.5       |  |
| Rh <sub>2</sub> P/TiO <sub>2</sub>               | 2.0       |  |
| Rh <sub>2</sub> P/Al <sub>2</sub> O <sub>3</sub> | 1.5       |  |
| Rh₂P/MgO                                         | 1.8       |  |

Table S2: Results of methanol and carbon monoxide reactions over Ni/C and  $Rh_2P/C$  at 350 °C. Data were collected at 180 ± 20 min time on stream. Reported yields were determined by multiplying the reactant conversion by the product mole fraction.

|                          | Ni/C            | Rh₂P/C |  |
|--------------------------|-----------------|--------|--|
|                          | Methanol        |        |  |
| Conversion, %            | 15.0            | 4.0    |  |
| CO Yield, %              | 14.7            | 2.6    |  |
| CH₄ Yield, %             | 0.3             | 1.2    |  |
|                          | Carbon Monoxide |        |  |
| Conversion, %            | 11.9            | 15.2   |  |
| CO <sub>2</sub> Yield, % | 11.9            | 0.7    |  |
| CH₄ Yield, %             | -               | 13.6   |  |



Fig. S9. Conversion as a function of time on stream observed over each catalyst during guaiacol deoxygenation experiments.



Fig. S10. Post-reaction XRD patterns of (a) Ni/C, (b) Ni/TiO<sub>2</sub>, (c) Ni/Al<sub>2</sub>O<sub>3</sub>, and (d) Ni/MgO prepared by solution NP methods, with reference diffraction patterns.



Fig. S11. Post-reaction XRD patterns of catalysts (a)  $Rh_2P/C$ , (b)  $Rh_2P/TiO_2$ , (c)  $Rh_2P/AI_2O_3$ , and (d)  $Rh_2P/MgO$  prepared by solution NP methods, with reference diffraction patterns.



Fig. S12. XRD patterns of (a) quartz and (b) SiC diluent materials with reference diffraction patterns.

Table S3: Analysis of pre- and post- reaction carbon content.

|                                    | Pre-reaction<br>carbon<br>(wt%) | Post-reaction<br>carbon<br>(wt%) | Increase in<br>carbon<br>(wt%) |
|------------------------------------|---------------------------------|----------------------------------|--------------------------------|
| Ni/TiO <sub>2</sub>                | 1.6                             | 4.7                              | 3.1                            |
| Ni/Al <sub>2</sub> O <sub>3</sub>  | 1.6                             | 5.8                              | 4.2                            |
| Ni/MgO                             | 0.8                             | 8.9                              | 8.1                            |
| Rh <sub>2</sub> P/TiO <sub>2</sub> | 2.9                             | 6.6                              | 3.8                            |
| $Rh_2P/Al_2O_3$                    | 3.3                             | 12.5                             | 9.2                            |
| Rh <sub>2</sub> P/MgO              | 1.4                             | 6.8                              | 5.3                            |



Fig. S13. Pre- (left) and post-reaction (middle) TEM images of (a)  $Rh_2P/C$ , (b)  $Rh_2P/TiO_2$ , (c)  $Rh_2P/Al_2O_3$ , and (d)  $Rh_2P/MgO$  with corresponding particle size distributions (right).

Table S4: The surface area weighted average particle size for pre-reaction and post-reaction Ni catalysts as determined by TEM and calculated according to  $\left(\frac{\sum D_{P,i}^{3}}{\sum D_{P,i}^{2}}\right)$ .

|                                   | Pre-reaction<br>(nm) | Post-reaction<br>(nm) |
|-----------------------------------|----------------------|-----------------------|
| Ni/C                              | 11.6                 | 13.5                  |
| Ni/TiO <sub>2</sub>               | 14.6                 | 23.4                  |
| Ni/Al <sub>2</sub> O <sub>3</sub> | 11.9                 | 13.4                  |
| Ni/MgO                            | 10.7                 | 16.3                  |