Supporting information

Elucidating the reaction pathway for ethene and propene formation in methanol to hydrocarbons reaction over high silica H-Beta

Jie Zhang^{ab}, Zhihua Huang^{ab}, Peidong Li^{ab}, Xiaomin Zhang^a, Xinzhi Zhang^a, Yangyang Yuan^{*a} and Lei Xu^{*a}

^a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China;

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Table S1. XRF results of H-Beta, HZSM-5, and H-SSZ-13.

Samples	H-Beta	H-ZSM-5	H-SSZ-13
Si/Al	125	132	86

Figure S1. XRD patterns of H-Beta, H-ZSM-5, and H-SSZ-13 samples.

Figure S2-1. SEM images of H-Beta.

Figure S2-2. SEM images of H-ZSM-5.

Figure S2-3. SEM images of H-SSZ-13.

Figure S3. N₂ adsorption-desorption isotherms of H-Beta, H-ZSM-5, and H-SSZ-13.

Sample	S	burface area (r	n^2g^{-1})	Pore volume (cm ³ g ⁻¹)		
	S _{BET} ^a	S _{micro} ^b	Sexternal ^b	V _{micro} ^b	$V_{meso} c$	
H-Beta	419	295	124	0.14	0.19	
H-ZSM-5	413	345	68	0.13	0.05	
H-SSZ-13	399	363	37	0.19	0.05	

Table S2. Textural properties of H-Beta, H-ZSM-5, and H-SSZ-13.

^{*a*} Surface area by Brunauer-Emmett-Teller (BET) method. ^{*b*} Micropore and external surface area and micropore volume by t-plot method. ^{*c*} Mesopore volume by Barrett-Joyner-Hallenda (BJH) method.

Figure S4. NH₃-TPD spectra of H-Beta, H-ZSM-5, and H-SSZ-13.

Samples	Si/Al ^a	T_{peak} (°C)		Acid amount ^c (µmol g ⁻¹)			
		LT peak ^b	HT peak ^b	Total acidity	Weak acidity	Strong acidity	
H-Beta	125	168	319	131.4	60.0	71.5	
H-ZSM-5	132	167	350	157.1	79.3	77.8	
H-SSZ-13	86	153	396	278.3	63.1	215.2	

Table S3. NH₃-TPD data and acid amount for H-Beta, H-ZSM-5, and H-SSZ-13.

^{*a*} The Silica-to-alumina ratio was obtained by an X-ray fluorescence spectrometer. ^{*b*} The LT peak represents a low temperature desorption peak. The HT peak represents a high temperature desorption peak. ^{*c*} Calculated with Gaussian function fit.

Figure S5. FTIR spectra of pyridine-adsorbed H-Beta, H-ZSM-5.

Sample _	Acidity by Py-IR (μ mol g ⁻¹) ^{<i>a</i>}						
	B/L	Brønsted	Lewis	total			
H-Beta	10.8	74.5	6.9	81.4			
H-ZSM-5	8.2	90.4	11.0	101.4			

 Table S4. Acidic Properties of H-Beta and H-ZSM-5.

^{*a*} The quantities of Brønsted and Lewis acid sites were calculated from the Py-IR spectra.

Figure S6. Ethene/2MBu yield versus time on stream over H-Beta, H-ZSM-5, and H-SSZ-13. Reaction condition: T=450 °C; WHSV= 2 h⁻¹; P_{MeOH} = 17 kPa. *^a* Ethene/2MBu designates the ratio of the synthesis of ethene and 2-methylbutane + 2-methyl-2-butene.

Figure S7. Product selectivities of methanol conversion over H-Beta after 1 h, 3 h, and 5 h on stream at different reaction temperatures. ^{*a*} C_{6+} designates all aliphatic hydrocarbons with equal to or greater than six carbon atoms.

Figure S8. product selectivity after 8min of ¹³C methanol reaction followed by 2min of ¹³C methanol co-reaction with ¹²C-propene, ¹²C-butene, and ¹²C-p-xylene over H-beta, H-ZSM-5 and H-SSZ-13 at 450 °C.

Figure S9-1. Isotopic distributions and total ¹²C content (number in brackets) in the effluent compounds and retained species after 8min of ¹³C methanol reaction followed by 2min of ¹³C methanol co-reaction with ¹²C-propene over H-beta at 450 °C.

Figure S9-2. Isotopic distributions and total ¹²C content (number in brackets) in the effluent compounds and retained species after 8min of ¹³C methanol reaction followed by 2min of ¹³C methanol co-reaction with ¹²C-butene over H-beta at 450 °C.

Figure S9-3. Isotopic distributions and total ¹²C content (number in brackets) in the effluent compounds and retained species after 8min of ¹³C methanol reaction followed by 2min of ¹³C methanol co-reaction with ¹²C-p-xylene over H-beta at 450 °C.

Figure S10. Product selectivity for C_{2-6} olefins, toluene, and p-xylene reaction alone over H-Beta after 65 min on stream at 450 °C. The feeding rate was equivalent to 3% of methanol (WHSV=2.0 h⁻¹) based on carbon.