Electronic Supplementary Information (ESI)

Controllable synthesis of Ce-doped a-MnO₂ for low-temperature selective

catalytic reduction of NO

Yajuan Wei,^{a,b,‡} Jia Liu,^{b,‡} Wei Su,^a Yan Sun,^a* Yanli Zhao^{b,c}*

^a High Pressure Adsorption Laboratory, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, PR China. Email: sunyan2011@tju.edu.cn

^b Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371. Email: zhaoyanli@ntu.edu.sg

^c School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.

[‡]These authors contributed equally to this work.

Figure S1. N₂ adsorption isotherms at 77K and pore size distributions of MnCe(0)O_x

Figure S2. N_2 adsorption isotherms at 77K and pore size distributions of MnCe(0.2)O_x

Figure S3. N_2 adsorption isotherms at 77K and pore size distributions of MnCe(0.3)O_x

Figure S4. XPS spectrum of $MnCe(n)O_x$ catalyst with a Ce/Mn molar ratio of 0

Figure S5. XPS spectrum of $MnCe(n)O_x$ catalyst with a Ce/Mn molar ratio of 0.3

Figure S6. XPS spectrum of MnCe(n)O_x catalyst with a Ce/Mn molar ratio of 0.5

Figure S7. Fitting of XPS spectrum of Ce in the $MnCe(n)O_x$ catalyst with a molar ratio Ce/Mn = 0.3

Figure S8. N₂ selectivity on MnCe(n)O_x catalyst in the temperature range of 40 °C -180 °C

<i>T</i> (°C)	1/ <i>T</i> (K)	$\eta_{ m NO}$	$\ln(-\ln(1-\eta_{\rm NO}))$
25	0.003354	0.076	-2.543
50	0.003095	0.093	-2.326
80	0.002832	0.157	-1.767
110	0.002610	0.315	-0.976
140	0.002420	0.567	-0.267
170	0.002257	0.846	0.625
190	0.002159	0.942	1.046

Table S1. Data for kinetics calculations.