Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Title: Composition-Directed Fe_xMo_{2-x}P Bimetallic Catalysts for Hydrodeoxygenation Reactions

<u>Author(s)</u>: Dallas J. Rensel,^{a†} Jongsik Kim,^{a†} Varsha Jain,^{b†} Yolanda Bonita,^a Neeraj Rai,^{b*} and Jason C. Hicks^{a*}

^a Department of Chemical and Biomolecular Engineering, 182 Fitzpatrick Hall, University of Notre Dame, Indiana 46556, United States

^b Dave C. Swalm School of Chemical Engineering and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi 39762, United States

⁺ Authors DJR, JK, and VJ contributed equally.

Table of Contents

The 2 nd reaction mechanism (HDO2)	
The 3 rd reaction mechanism (HDO3)	
Table S1-S8	
Fig. S1-S13	

The 2nd reaction mechanism (HDO2)

After adsorption of C_6H_5OH on the catalyst surface (Fig. S7 (a) and S8 (a); Eqn. (S1)), the $C_6H_5OH^*$ is subsequently dissociated to produce phenyl ($C_6H_5^*$) and hydroxyl species (OH*) adsorbed on the surface (Fig. S7 (b)-(c) and S8 (b)-(c); Eqn. (S2)). Notably, this step exhibits activation energy barriers of 0.53 eV for Fe₁Mo₁P and 0.94 eV for Fe_{1.5}Mo_{0.5}P. This provides evidence that C_{AROMATIC}-O bond scission is energetically more favorable on Fe₁Mo₁P rather than Fe₁₅Mo₀₅P, which can result mainly from greater partial charge on metallic species for the Fe₁Mo₁P surface (*i.e.*, +0.81 |e|) compared to the $Fe_{1.5}Mo_{0.5}P$ surface (*i.e.*, +0.63 |e|). Following dissociative adsorption of H_2 species on the surface (H*, Fig. S7 (d) and S8 (d); Eqn. (S3)), rotation of $C_6H_5^*$ species in the presence of H* takes place (Fig. S7 (e) and S8 (e); Eqn. (S4)). The activation energy barriers for $C_6H_5^*$ rotation are 0.15 eV and 0.27 eV for Fe₁Mo₁P and Fe_{1.5}Mo_{0.5}P respectively, which correlates with the stronger adsorption of C₆H₅OH on the surface of Fe_{1.5}Mo_{0.5}P than Fe₁Mo₁P, as discussed in the main manuscript. H transfer to $C_6H_5^*$ species subsequently occurs to form C_6H_5 -H* species (Fig. S7 (f) and S8 (f); Eqn. (S4)), showing activation energy barriers of 0.39 eV for Fe₁Mo₁P and 0.41 eV for Fe₁₅Mo₀₅P. After adsorbing benzene species ($C_6H_6^*$) with adsorption energies of -1.7 eV for Fe₁Mo₁P and -2.28 eV for Fe_{1.5}Mo_{0.5}P (Fig. S7 (g) and S8 (g)), the surfaces desorb C₆H₆ species (Eqn. (S7)) with desorption energies of 1.01 eV and 1.52 eV for Fe₁Mo₁P and Fe_{1.5}Mo_{0.5}P, respectively. Formation of H₂O species and their subsequent desorption from the surfaces also occurs (Eqn. (S5) and (S6)), while activation energy barriers required to form H₂O are 0.69 eV and 1.02 eV for Fe₁Mo₁P and Fe_{1.5}Mo_{0.5}P respectively. Importantly, C_{AROMATIC}-O bond cleavage of $C_6H_5OH^*$ requires the largest energy barriers among three major endothermic elementary steps stated above and therefore can be considered as the slowest, rate-determining step in HDO2.

$$C_{6}H_{5}OH(g) + * \leftrightarrow C_{6}H_{5}OH^{*}(S1)$$

$$C_{6}H_{5}OH^{*} + * \leftrightarrow C_{6}H_{5}^{*} + OH^{*}(S2)$$

$$H_{2}(g) + 2^{*} \leftrightarrow 2H^{*}(S3)$$

$$C_{6}H_{5}^{*} + H^{*} \leftrightarrow C_{6}H_{6}^{*} + * (S4)$$

$$H^{*} + OH^{*} \leftrightarrow H_{2}O^{*} + * (S5)$$

$$H_{2}O^{*} \leftrightarrow H_{2}O(g) + * (S6)$$

$$C_{6}H_{6}^{*} \leftrightarrow C_{6}H_{6}(g) + * (S7)$$

The 3rd reaction mechanism (HDO3)

The 3rd mechanism postulates that the C atom vicinal to the O atom in C₆H₅OH* can act as a nucleophilic site to attract H*. Interestingly, rather than forming a reaction intermediate where H is bound to the aromatic C atom, it was energetically more favorable to form a reaction intermediate C₆H₅-OH₂* where the H atom is connected to OH (Fig. S9 (a)-(c) and S10 (a)-(c); Eqn. (S8)-(S10)), thereby modifying the series of elementary steps, accordingly. As shown in Fig. S9 (d)-(e), S10 (d)-(e), rotation of OH renders H atom of C₆H₅-OH₂* to back-attack C₆H₅ species, resulting in the generation of C₆H₅-H* without involving the ring rotation step found on both HDO1 and HDO2 (Eqn. (S11)-(S12)). This step requires the largest activation barriers of 1.07 eV for Fe₁Mo₁P and 1.68 eV for Fe_{1.5}Mo_{0.5}P throughout all elementary steps. Although this reaction mechanism also supports experimental observation that Fe₁Mo₁P with the greater surface Lewis acid character can facilitate the phenol HDO in comparison with Fe-rich analogue, this mechanism is unlikely due to higher activation energy barriers than alternative pathways (*i.e.*, HDO1 and HDO2).

 $\begin{array}{rcl}
C_{6}H_{5}OH(g) + & \ast & \leftrightarrow & C_{6}H_{5}OH^{*}(S8) \\
H_{2}(g) + 2^{*} & \leftrightarrow & 2H^{*}(S9) \\
C_{6}H_{5}OH^{*} + H^{*} & \leftrightarrow & C_{6}H_{5} - OH_{2}^{*} + & *(S10) \\
C_{6}H_{5} - OH_{2}^{*} + & \ast & \leftrightarrow & C_{6}H_{5} - OH_{2}^{*} + & *(S11) \\
C_{6}H_{5} - OH_{2}^{*} + & \ast & \leftrightarrow & C_{6}H_{6}^{*} + OH^{*}(S12) \\
H^{*} + OH^{*} & \leftrightarrow & H_{2}O^{*} + & *(S13) \\
H_{2}O^{*} & \leftrightarrow & H_{2}O(g) + & *(S14) \\
C_{6}H_{6}^{*} & \leftrightarrow & C_{6}H_{6}(g) + & *(S15)
\end{array}$

coll parameter (Å) —	Fe ₁ M	Io ₁ P	Fe _{1.5} M	0 _{0.5} P
cell parameter (A)	experimental	computed	experimental	computed
а	11.84	11.75	11.76	11.78
b	14.60	14.80	14.44	14.11
C	13.56	13.48	13.40	13.35

Table S1 Cell parameters of Fe_1Mo_1P and $Fe_{1.5}Mo_{0.5}P$ computed using 2 X 4 X 2 supercell via PW91.

Table S2 Surface energies for Fe_1Mo_1P and $Fe_{1.5}Mo_{0.5}P$.

facet	Fe ₁ Mo ₁ P (eV Å ⁻²)	Fe _{1.5} Mo _{0.5} P (eV Å ⁻²)
(100)	0.18	0.13
(010)	0.17	0.15
(001)	0.16	0.16
(211)	0.08	0.07
(112)	0.01	0.01

Table S3 Molar ratios of Fe to Mo for $Fe_XMo_{2-X}P$ materials.

target	bulk ^a	(near) surface ^b
0.79	0.79 (± 0.07)	0.80 (± 0.03)
1	0.98 (± 0.08)	1.06 (± 0.05) ^c
1.30	1.33 (± 0.11)	1.17 (± 0.09)
1.67	1.70 (± 0.13)	1.81 (± 0.07)
3	3.44 (± 0.11)	2.78 (± 0.06)

^{*a*} via ICP-OES. ^{*b*} via XP spectra. ^{*c*} 1.06 (± 0.15) via EDX.

Table S4 In situ DRIFT bands of pyridine adsorbed on Lewis or Brønsted acid sites present in Fe_{0.99}Mo_{1.01}P.

	band ^a (cm ⁻¹)		
	V _{19a}	V _{19b}	
Lewis acid sites	1490-1500	1445-1460	
Brønsted acid sites	1490-1500	1510-1560	

^a See Fig. S3.

Table S5 Bond lengths for	$r Fe_1Mo_1P$ and $Fe_{1.5}Mo_{0.5}P$.
---------------------------	---

bond ^a	Fe ₁ Mo ₁ P (Å)	Fe _{1.5} Mo _{0.5} P (Å)
C-Fe	2.13	2.40
O-Fe	2.10	2.30
O-Mo ₁	3.16	2.82
O-Mo ₂	3.12	-
O-P	2.40	3.86
H-Fe	2.52	3.24
H-Mo	2.94	3.34
H-P	1.75	4.40

^{*a*} See atoms given in Fig. S11.

Table S6 Effect of altering the K-points grid on activation energy barrier for Fe_1Mo_1P and $Fe_{1.5}Mo_{0.5}P$.

noromotor	Fe ₁ Mo ₁ P		Fe _{1.5} Mo _{0.5} P	
parameter	2 X 2 X 1 grid	gamma point	2 X 2 X 1 grid	gamma point
activation energy barier (eV) for C-O cleavage ^a	0.390	0.391	0.772	0.773
^a computed on (112) facet.				

<i>n</i> -alkane	Fe_1Mo_1P (eV)	Fe _{1.5} Mo _{0.5} P (eV)
C ₂ H ₆	-0.20	-0.17
C ₃ H ₈	-0.24	-0.19
C_4H_{10}	-0.22	-0.17
C ₅ H ₁₂	-0.23	-0.19
C_6H_{14}	-0.20	-0.15
C ₇ H ₁₆	-0.23	-0.19

Table S7 Adsorption energies of *n*-alkane homologues on the (112) facets for Fe_1Mo_1P and $Fe_{1.5}Mo_{0.5}P$.

Table S8 Activation energies required in rate-determining steps on $Fe_xMo_{2-x}P$ materials under different reaction pathways.

	HDO1	HDO2	HDO3
Fe ₁ Mo ₁ P	0.39 eV	0.53 eV	1.07 eV
Fe _{1.5} Mo _{0.5} P	0.77 eV	0.94 eV	1.68 eV

Fig. S1 HRTEM images of $Fe_{0.99}Mo_{1.01}P$. White, dotted circle in (b) indicates a spot used for surface compositional analysis via EDX.

Fig. S2 XP spectra of $Fe_xMo_{2-x}P$ -catalysts: (a) Fe 2p, (b) Mo 3d, and (c) P 2p regions. Empty circles and solid lines indicate raw and fitted data, respectively.

Fig S3 *In situ* DRIFT spectra (background subtracted) of $Fe_{0.99}Mo_{1.01}P$ materials after their exposure to pyridine at 150 °C: (a) $Fe_{0.99}Mo_{1.01}P$ reduced at 650 °C and (b) $Fe_{0.99}Mo_{1.01}P$ reduced at 850 °C. Black square indicates the gaseous pyridine.

Fig. S4 Adsorption of benzonitrile on the (112) facets for Fe_1Mo_1P (a, c, and e) and $Fe_{1.5}Mo_{0.5}P$ (b, d, and f) with three different binding configurations (a and b; c and d; e and f). E_{BN} and E_{PH} indicate adsorption energies of benzonitrile and phenol under identical binding configurations (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O).

Fig S5 XP spectra of $Fe_{1.55}Mo_{0.45}P$ post TOS run with benzonitrile: (a) Fe 2p, (b) Mo 3d, (c) P 2p, and (d) N 1s and Mo $3p_{3/2}$ regions. Empty circles and solid lines indicate raw and fitted data, respectively.

Fig. S6 Optimized structures of phenol (C_6H_5OH), benzene (C_6H_6), and reaction intermediates on (112) facet for $Fe_{1.5}Mo_{0.5}P$ during HDO1: (a) $C_6H_5OH^*$, (b) $C_6H_5OH^*$ and H^* , (c) $C_6H_5-OH_2^*(TS)$, (d) H^* , $C_6H_5^*$ and OH_2^* , (e) H^* , rotated $C_6H_5^*$, and H_2O^* , (f) $C_6H_5-H^*$ and H_2O^* , and (g) $C_6H_6^*$ and H_2O^* (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O).

Fig. S7 Optimized structures of phenol (C_6H_5OH), benzene (C_6H_6), and reaction intermediates on the (112) facet for Fe_1Mo_1P during HDO2: (a) $C_6H_5OH^*$, (b) $C_6H_5-OH^*$ (transition state (TS)), (c) $C_6H_5^*$ and OH^* , (d) $C_6H_5^*$, H^* , and OH^* , (e) H*, rotated $C_6H_5^*$, and OH^* , (f) $C_6H_5-H^*$ and H-OH*, and (g) $C_6H_6^*$ and H_2O^* (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O). (h) reaction energetics on the (112) facet for Fe_1Mo_1P (magenta) and $Fe_{1.5}Mo_{0.5}P$ (green) during HDO2.

Fig. S8 Optimized structures of phenol (C_6H_5OH), benzene (C_6H_6), and reaction intermediates on (112) facet for $Fe_{1.5}Mo_{0.5}P$ during HDO2: (a) $C_6H_5OH^*$, (b) $C_6H_5-OH^*$ (transition state (TS)), (c) $C_6H_5^*$ and OH^* , (d) $C_6H_5^*$, H^* , and OH^* , (e) H^* , rotated $C_6H_5^*$, and OH^* , (f) $C_6H_5-H^*$ and $H-OH^*$, and (g) $C_6H_6^*$ and H_2O^* (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O).

Fig. S9 Optimized structures of phenol (C_6H_5OH), benzene (C_6H_6), and reaction intermediates on (112) facet for Fe_1Mo_1P during HDO3: (a) $C_6H_5OH^*$, (b) $C_6H_5OH^*$ and H^* , (c) $C_6H_5-OH_2^*$, (d) $C_6H_5-OH_2^*$ with rotated hydroxyl group, (e) $C_6H_5-H-OH^*$ (TS), (f) $C_6H_6^*$ and OH^* , (g) $C_6H_6^*$, OH^* , and H^* , and (h) $C_6H_6^*$ and H_2O^* (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O). (i) reaction energetics on the (112) facet for Fe_1Mo_1P (magenta) and $Fe_{1.5}Mo_{0.5}P$ (green) during HDO3.

Fig. S10 Optimized structures of phenol (C_6H_5OH), benzene (C_6H_6), and reaction intermediates on (112) facet for $Fe_{1.5}Mo_{0.5}P$ during HDO3: (a) $C_6H_5OH^*$, (b) $C_6H_5OH^*$ and H^* , (c) $C_6H_5-OH_2^*$, (d) $C_6H_5-OH_2^*$ with rotated hydroxyl group, (e) $C_6H_5-H-OH^*$ (TS), (f) $C_6H_6^*$ and OH^* , (g) $C_6H_6^*$, OH^* , and H^* , and (h) $C_6H_6^*$ and H_2O^* (orange for Fe; blue for Mo; green for P; grey for C; silver for H; red for O).

Fig. S11 Atoms on the (112) facets for (a) Fe_1Mo_1P and $Fe_{1.5}Mo_{0.5}P$.

Fig. S12 Deprotonation of phenol on (112) facet for Fe_1Mo_1P : (a) $C_6H_5OH^*$, (b) $C_6H_5O-H^*$ (transition state (TS)), and (c) $C_6H_5O^*$ and H^* . Activation energies required for (a) \rightarrow (c) and (c) \rightarrow (a) are 0.56 eV and 0.08 eV, respectively.

Fig. S13 Deprotonation of phenol on (112) facet for $Fe_{1.5}Mo_{0.5}P$: (a) $C_6H_5OH^*$, (b) $C_6H_5O-H^*$ (transition state (TS)), and (c) $C_6H_5O^*$ and H^{*}. Activation energies required for (a) \rightarrow (c) and (c) \rightarrow (a) are 0.52 eV and 0.03 eV, respectively.