Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

for

Efficient Acceptorless Dehydrogenation of Secondary Alcohols to

Ketones mediated by a PNN-Ru(II) Catalyst

Zheng Wang,^{a,b,c} Bing Pan,^b Qingbin Liu,^{b,*} Erlin Yue,^a Gregory A. Solan,^{*,a,d} Yanping Ma,^a and Wen-Hua Sun^{b,c*}

^a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

- ^b College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China.
- ^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk

⁺ Corresponding Authors: whsun@iccas.ac.cn; liuqingb@sina.com;

Tel: +86-10-62557955

Contents

A. Ge	eneral inform	nation	•••••	••••••		S2
B. Ex	perimental	•••••				S2
C. Ad	lditional cat	alytic stud	dies			S4
D. ¹ H	, ¹³ C and ³¹ P	NMR spe	ctra of co	omplexes C and	l D	S8
E. Ide	entification	of interm	ediate sp	ecies detected	using C as cataly	/s.S12
F.	Crystal	data	and	structure	refinement	for
C	•••••	S1	.6			
G. Re	eferences					S18

A. General Information

All experiments with metal complexes and phosphine ligands were carried out under an atmosphere of nitrogen. All solvents were reagent grade or better and were used after being distilled under nitrogen. Most of the chemicals used in the catalytic reactions were repurified according to standard procedures (*e.g.*, vacuum distillation). All ¹H NMR (500 MHz), ¹³C NMR (125 MHz) and ³¹P NMR spectra were recorded on a Bruker Bruker AV-III (500 MHz) spectrometer. GC analyses were carried out on an Agilent 6820 instrument using an OV-1701 column. GC conditions: Injector Temp: 250 °C; Detector Temp: 250 °C; column temperature 150 °C. ESI-MS analysis was performed on a 3200 QTRAP 1200 infinity series instrument using a column C18, acetonitrile: water = 70:30, flow rate = 1 mL / min, electronic energy = 50 eV, Q1MS scan range = 100~1000.

B. Experimental

1 Syntheses and characterization of the catalyst

1.1. Complex **A** was synthesized and characterized according to the procedure reported by ourselves.¹

1.2. Complex **B** was synthesized and characterized according to the procedure reported by ourselves.²

1.3 Synthesis of complex C³

RuCl₂(PPh₃)₃ (2.00 g, 2.087 mmol) and N-(2-(diphenylphosphino)ethyl)-5,6,7,8-tetrahydroquinolin-8-amine (0.75 g, 2.087 mmol) were dissolved in toluene (100 mL) and stirred at 100 $^{\circ}$ C for 3 h. After being cooled to room temperature, the resulting precipitate was filtered and washed with diethyl ether (3 × 10 mL). The title complex was obtained as pale yellow solid (1.08 g, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.67 (q, *J* = 7.8, 7.2 Hz, 6H), 7.43 (t, *J* = 8.7 Hz, 2H), 7.39 – 7.18 (m, 10H), 7.17-7.06 (m, 8H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 5.35 (s, H, N-H), 3.54 (q, *J* = 48.6, 38.2 Hz, 1H), 2.86 – 2.57 (m, 4H), 2.39 – 2.29 (m, 2H), 2.17-1.98 (m, 3H), 1.78 – 1.62 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 161.21, 154.69, 138.71, 137.89, 137.17, 136.87, 136.77, 135.23, 135.18, 135.10, 135.07, 135.02, 134.90, 134.78, 134.71, 134.00, 133.93, 133.57, 131.42, 131.35, 129.07, 128.84, 128.78, 128.62, 128.26, 127.83, 127.76, 127.61, 127.54, 127.34, 127.29, 127.27, 127.21, 127.14, 127.08, 127.01, 125.34, 122.59, 61.22, 45.65, 44.78, 37.98 (d, *J* = 27.2 Hz), 28.96, 27.97, 21.50, 20.73 (CH₃-Toluene)

³¹P NMR (202 MHz, CDCl₃) δ 55.68 (d, *J* = 27.6 Hz), 45.61 (d, *J* = 27.8 Hz).

ESI-MS (m/z) Calcd for $[C_{41}H_{41}Cl_2N_2RuP_2]$, 795.1; found: 795.4 $[C+1]^+$; Calcd for $[C_{41}H_{40}Cl_2N_2RuP_2]$, 759.1; found: 759.6 $[C-Cl]^+$.

Anal. Calcd for C₄₁H₄₀Cl₂N₂RuP₂: C, 61.96; H, 5.073; N, 3.52. Found: C, 61.77; H, 5,159; N, 3.34.

On standing in $CDCl_3$ for 4 h, complex **C** was obtained as a mixture of two isomers, **C/C'** 72:28. No free PPh₃ was detected after this time (NMR sample: 20 mg of **C** in 0.8 mL CDCl₃).

C and C'

¹³C NMR (126 MHz, CDCl₃) δ 162.74 (**C**'), 161.21 (maj-C), 157.58 (**C**'), 154.69 (maj-C), 138.71, 137.89, 137.17, 136.87, 136.77, 135.23, 135.18, 135.10, 135.07, 135.02, 134.90, 134.78, 134.71, 134.00, 133.93, 133.57, 131.42, 131.35, 129.07, 128.84, 128.78, 128.62, 128.26, 127.83, 127.76, 127.61, 127.54, 127.34, 127.29, 127.27, 127.21, 127.14, 127.08, 127.01, 125.34, 122.59 (maj-C), 120.98 (**C**'), 61.93 (**C**'), 61.22 (**C**), 45.65 (maj-C), 44.78 (**C**'), 37.98 (d, *J* = 27.2 Hz, **C**), 35.11 (d, *J* = 27.6 Hz, **C**'), 28.96 (**C**), 28.27 (**C**') 27.97 (**C**), 27.21 (**C**'), 21.50 (**C**), 21.21 (**C**'), 20.73 (CH₃-Toluene).

³¹P{¹H} NMR (202 MHz, CDCl₃) **C**: δ 55.68 (d, *J* = 27.6 Hz), 45.61 (d, *J* = 27.8 Hz); **C**': δ 48.12 (d, *J* = 27.7 Hz), 43.16 (d, *J* = 29.3 Hz).

1.4 Preparation of complex D

To a solution of **C** (0.50 g, 0.63 mmol) in toluene (10 mL) was added a solution of NaBH₄ (0.46 g, 12.6 mmol) in ethanol (10 mL). The reaction mixture was stirred for 30 min at 65 °C and then for 30 min at room temperature to give a grey suspension. The suspension was filtered in the air, washed with diethylether (3 × 10 mL) affording the title complex as a grey solid that was dried under reduced pressure for 2 h (0.42 g, 90%). ¹H NMR (500 MHz, CDCl₃) δ 8.76-6.14 (m, 28H, py+ph), 5.56 (s, H, N-H), 4.70 (d, *J* = 45.8 Hz, 1H,), 4.18 (m, 1H), 3.73-3.37 (m, 1H), 3.05-2.55 (m, 4H), 2.28-1.09 (m, 4H), -1.96 (br, *J* = 100.5 Hz, 4H, BH₃), -14.11 (t, *J* = 24.5 Hz, 1H). ¹³C NMR (CDCl₃) δ 161.19, 154.69, 138.68, 138.42, 137.16, 136.86, 136.73, 135.22, 135.08, 135.00, 134.89, 133.99, 133.91, 133.80, 133.54, 132.16, 132.08, 131.92, 129.04, 128.81, 128.74, 128.59, 128.46, 128.23, 127.26, 127.18, 127.11, 127.05, 126.98, 125.31, 122.57, 61.20, 45.63, 37.97 (d, *J* = 27.0 Hz), 28.96, 27.95, 20.71. ³¹P{¹H} NMR (202 MHz, CDCl₃) δ 47.68 (d, *J* = 29.4 Hz), 42.74 (d, *J* = 29.4 Hz).

ESI-MS (m/z): Calculated for [C₄₁H₄₄BN₂P₂Ru]: 740.2; found: 740.7 [M+1]⁺.

Anal. Calcd for C₄₁H₄₄BN₂P₂Ru: C, 66.67; H, 6.00; N, 3.79. Found: C, 66.43; H, 5.95; N, 3.53.

C. Catalyst optimization using C

1. Optimizing conditions

Table S1. Optimization of the reaction conditions for the acceptorless dehydrogenation of cycloheptanol using C.^a

	OH-	C (0.025 mol%), base → 130 or 160 °C, solvent	\bigcirc^{0}	
Entry	Base (mmol)	т (°С)	Time (h)	Conv. ^c (%)
1	NaOH (5)	130	16	18
			24	23
2	K ₂ CO ₃ (5)	130	5	31
			24	39
3	CsCO ₃ (2.5)	130	7	61
			24	63
4	CsCO ₃ (1)	130	24	19
5	<i>t</i> -BuOK (5)	130	24	74
			48	81
6 ^b	<i>t</i> -BuOK (5)	160	24	76
			36	94
7 ^b	None	160	24	5

^a Cycloheptanol (5 mmol), complex **C** (1.25×10^{-3} mmol), reaction temperature = $130 \text{ }^{\circ}\text{C}$ (oil bath temperature), toluene (5 mL). ^b Reaction temperature = $160 \text{ }^{\circ}\text{C}$ (oil bath temperature), *p*-xylene (5 mL). ^c The conversion was determined by GC using dodecane as an internal standard.

2. The primary alcohols in the AAD reaction by C

2. 1 Experimental: Under an atmosphere of argon, a Schlenk vessel equipped with a stir bar, was loaded with the ruthenium complex **C** (0.1 mmol), the corresponding alcohol (10 mmol) and *t*-BuOK (1 mmol) in toluene (5 mL). The reaction was then stirred and heated to 117 °C (oil-bath temperature), with the reaction vessel open to the bubbler. After the specified reaction time (40 - 72 h), the resultant solution was cooled to room temperature and the reaction mixture filtered through a plug of silica gel and then analyzed by GC using dodecane as an internal standard, employing an OV-1701 column column on Agilent 6820 instrument

Table S2.⁵ Using primary alcohols in the acceptorless alcohol dehydrogenation with $\mathbf{C}.^{\mathrm{a}}$

	R^OH + R	←OH 0.1 mol% tolue	C , 10 mol% <i>t</i> -Bu ne, heat		R
Entry	Alcohol	Product	t (h)	Conv. (%) ^b	TON
1	∕он	\mathcal{A}_{0}	40	36	360
2	но		72	96	960
3	n-C ₇ H ₁₅ OH	n-C7H15	72	86	860
4	ОН	Ph O Ph	20	78	780

^a Reaction conditions: alcohol (10 mmol), **C** (0.1 mmol) and *t*-BuOK (1 mmol) in toluene (5 mL) at 117 ^oC (oil-bath temperature).

^b The conversion was determined by GC using dodecane as an internal standard

2.2 GC-MS spectra of the product of benzyl alcohol in AAD reaction

PEAK LIST

RT: 2.62 - 13.27

Number of detected peaks: 2

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
6.63	6.58	6.8	4.27E+08	41.22	69481422	56
7.44	7.39	8.02	6.09E+08	58.78	54585071	44

m/z

Apex RT	Start RT	End RT	Area	%Area	Height	%Height
7.43	7.39	7.81	3.82E+08	45.12	5.50E+07	49
14.17	14.11	14.34	4.65E+08	54.88	5.60E+07	50

D. ¹H, ¹³C and ³¹P NMR spectra of complexes C and D

1. The ¹H NMR spectrum of C in CDCl₃

2. The $^{13}C\{^{1}H\}$ NMR spectrum of C in CDCl₃

3. The ³¹P{¹H} NMR spectrum of C in CDCl₃ recorded on dissolution

4. The ${}^{13}C{}^{1}H$ NMR spectrum of C in CDCl₃: spectrum recorded after 4 hours

5. The ³¹P{¹H} NMR spectrum of C in CDCl₃; spectrum recorded after 4 hours

6. The ¹H NMR spectrum of D in $CDCl_3$

 $^{[^{31}}P{^{1}H} NMR (162 MHz, CDCl_{3})$ spectrum recorded after four hours in CDCl₃ (ratio of C:C' = 78:28)]

7. The ${}^{13}C{}^{1}H$ NMR spectrum of D in CDCl₃

9. Comparison of the ¹H NMR spectra of D recorded over time in CDCl₃

E. Identification of intermediate species detected using C as catalyst

Intermediate	ESI detected species	<i>m/z</i> value	Structural assignment
Complex C	[C +1] ⁺	795.4	$\begin{bmatrix} & & & \\ N & & & \\ CI & Ru & N & H \\ Ph_3P' & & & \\ CI & Ph' & Ph \end{bmatrix}^+$
M-1	[(M-1)+1]+	759.1	$\begin{bmatrix} N \\ N \\ Cl \\ N \\ Ph_{3}P \\ Ph \\ $
M-2	[(M-2)+1]+	833.6	$\begin{bmatrix} & & & \\ & N & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $
M-2"	[(M-2 ")+1]	867.8	$\begin{bmatrix} \underbrace{N} \\ CI \\ Ru \\ Ph_{3}P' \\ O' \\ Ph \\ Ph' \\ $
M-3	[(M-3)+1] ⁺ [(M-3)+Na] ⁺	761.3 783.9	$\begin{bmatrix} & & & \\ & N & & \\ & & & \\ CI & & & \\ Ph_3P & & & \\ Ph' & Ph & \\ Ph' & Ph & \\ Ph' & Ph & \\ M & 2 \end{bmatrix}$
1			C-IVI

Table S2. Species detected by ESI mass spectrometry under catalytic conditions using C as catalyst 4,6

1. ESI-MS (m/z) spectrum of C in CDCl₃

Figure S1. ESI mass spectra of **C** in $CDCl_3$ (1 mL) recorded using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile:water = 70:30, flow rate = 1 ml / min, electronic energy = 50 eV, Q1MS scan range = 500~900. The base peak corresponds to [**C**+1]⁺ at m/z 795.4.

2. ESI-MS (m/z) spectrum of C and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 °C after 24 hours

Figure S2. ESI mass spectra of **C** and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in $CDCl_3$ at 45 °C, recorded after 24 hours using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile:water = 70:30, flow rate = 1 ml / min, electronic energy = 50eV, Q1MS scan range = 200~1000. The base peak corresponds to the intermediates [(M-1)+1]⁺ at *m/z* 759.1

3. ESI-MS (m/z) spectrum of C and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 °C after 24 hours

Figure S3. ESI mass spectra of **C** and benzyl alcohol in the presence of KOtBu (1 eq.) in CDCl₃ at 45 °C, recorded after 24 hours using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile:water = 70:30, flow rate = 1ml / min, electronic energy = 50 eV, Q1MS scan range = 200~1000. The base peak corresponds to the intermediate $[(M-2)+1]^+$ at m/z 833.6.

4. ESI-MS (m/z) spectrum of C and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 °C after 24 hours

Figure S4: ESI mass spectra of **C** and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 $^{\circ}$ C, recorded after 24 hours using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile:water = 70:30, flow rate = 1 ml / min, electronic energy =5 0eV, Q1MS scan range = 500~1000. The base peak corresponds to the intermediates [(M-2")+1] at *m/z* 867.8.

5. ESI-MS (m/z) spectrum of C and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 °C after 24 hours

Figure S5. ESI mass spectra of **C** and benzyl alcohol in the presence of *t*-BuOK (1 eq.) in CDCl₃ at 45 °C, recorded after 24 hours using the 3200 QTRAP 1200 infinity series instrument. Acetonitrile:water = 70:30, flow rate = 1 ml / min, electronic energy = 50 eV, Q1MS scan range = 200^{-1000} . The base peak corresponds to the intermediates [(M-3)+1]⁺ at *m/z* 761.3 and [(M-3)+Na]⁺ at *m/z* 823.9.

F. Crystal data and structure refinement for C

Empirical formula	$C_{41}H_{40}CI_2N_2P_2Ru$
Formula weight	794.66
Temperature	173(2) К
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P2(1)/n
Unit cell dimensions	a = 11.188(2) Å alpha = 90 deg.
	b = 25.322(5) Å beta = 93.32(3) deg.
	c = 16.401(3) Å gamma = 90 deg.
Volume	4638.6(16) Å ³
Z, Calculated density	4,1.138 Mg/m ³
Absorption coefficient	0.548 mm ⁻¹
F(000)	1632
Crystal size	0.14 x 0.10 x 0.08 mm
Theta range for data collection	2.03 to 25.00 deg.
Limiting indices	-13<=h<=10, -29<=k<=29, -19<=l<=18
Reflections collected / unique	26111 / 8142 [R(int) = 0.1055]
Completeness to theta = 25.00	99.7 %

 Table S3.
 Crystallographic and data processing parameters for C.

Absorption correction	None
Max. and min. transmission	0.9590 and 0.9253
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8142 / 0 / 433
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0736, wR2 = 0.1795
R indices (all data)	R1 = 0.0981, wR2 = 0.1921
Largest diff. peak and hole	0.519 and -0.591 e.Å ⁻³

Table S4.	Bond lengths [[Å] and angles [deg] for C	
Ru(1)-N(2)	2.0	089(5)	C(9)-C(8)	1.524(8)
Ru(1)-N(1)	2.5	162(5)	C(8)-C(7)	1.526(10)
Ru(1)-P(1)	2.2	2622(17)	C(23)-C(24)	1.404(10)
Ru(1)-P(2)	2.3	3249(17)	C(23)-C(28)	1.406(10)
Ru(1)-Cl(1)	2.4	4275(17)	C(10)-C(11)	1.542(9)
Ru(1)-Cl(2)	2.	5013(16)	C(19)-C(20)	1.402(11)
P(2)-C(35)	1.3	847(7)	C(39)-C(38)	1.400(10)
P(2)-C(23)	1.5	853(7)	C(28)-C(27)	1.410(9)
P(2)-C(29)	1.3	859(7)	C(38)-C(37)	1.309(11)
P(1)-C(12)	1.3	835(7)	C(24)-C(25)	1.366(10)
P(1)-C(11)	1.3	846(6)	C(26)-C(25)	1.335(11)
P(1)-C(18)	1.5	856(7)	C(26)-C(27)	1.390(11)
N(1)-C(9)	1.	503(8)	C(2)-C(3)	1.380(10)
N(1)-C(10)	1.	519(8)	C(2)-C(1)	1.389(10)
N(2)-C(1)	1.	349(8)	C(34)-C(33)	1.386(10)
N(2)-C(5)	1.	377(8)	C(7)-C(6)	1.505(10)
C(4)-C(3)	1.	385(9)	C(13)-C(14)	1.375(11)
C(4)-C(5)	1.	398(9)	C(33)-C(32)	1.389(11)
C(4)-C(6)	1.	506(9)	C(32)-C(31)	1.439(12)
C(35)-C(36)	1.	389(9)	C(17)-C(16)	1.381(11)
C(35)-C(40)	1.4	438(10)	C(36)-C(37)	1.397(10)
C(5)-C(9)	1.	504(8)	C(14)-C(15)	1.393(11)
C(40)-C(39)	1.4	404(9)	C(21)-C(20)	1.386(10)
C(29)-C(34)	1.	379(9)	C(21)-C(22)	1.404(11)
C(29)-C(30)	1.	396(9)	C(30)-C(31)	1.308(10)
C(18)-C(69)	1.	380(9)	C(15)-C(16)	1.360(11)
C(18)-C(19)	1.	390(9)	C(22)-C(69)	1.339(10)
C(12)-C(13)	1.	393(10)	C(12)-C(17)	1.416(10)
N(2)-Ru(1)-N	N(1) 78	3.61(19)	C(69)-C(18)-P(1)	124.8(5)
N(2)-Ru(1)-P	P(1) 90	0.62(14)	C(19)-C(18)-P(1)	116.5(5)
N(1)-Ru(1)-P	P(1) 84	1.06(14)	C(13)-C(12)-C(17)	118.1(7)

N(2)-Ru(1)-P(2)	98.90(15)	C(13)-C(12)-P(1)	121.7(5)
N(1)-Ru(1)-P(2)	173.39(14)	C(17)-C(12)-P(1)	120.0(6)
P(1)-Ru(1)-P(2)	102.16(6)	N(1)-C(9)-C(5)	108.8(5)
N(2)-Ru(1)-Cl(1)	165.34(14)	N(1)-C(9)-C(8)	116.5(5)
N(1)-Ru(1)-Cl(1)	86.84(14)	C(5)-C(9)-C(8)	113.5(5)
P(1)-Ru(1)-Cl(1)	89.63(6)	C(9)-C(8)-C(7)	109.1(6)
P(2)-Ru(1)-Cl(1)	95.37(6)	C(24)-C(23)-C(28)	118.4(6)
N(2)-Ru(1)-Cl(2)	92.35(14)	C(24)-C(23)-P(2)	119.3(5)
N(1)-Ru(1)-Cl(2)	84.61(13)	C(28)-C(23)-P(2)	122.1(5)
P(1)-Ru(1)-Cl(2)	167.48(6)	N(1)-C(10)-C(11)	111.9(5)
P(2)-Ru(1)-Cl(2)	89.40(6)	C(18)-C(19)-C(20)	119.7(7)
Cl(1)-Ru(1)-Cl(2)	84.44(6)	C(38)-C(39)-C(40)	120.4(7)
C(35)-P(2)-C(23)	99.8(3)	C(23)-C(28)-C(27)	119.7(7)
C(35)-P(2)-C(29)	98.0(3)	C(37)-C(38)-C(39)	121.2(7)
C(23)-P(2)-C(29)	101.7(3)	C(25)-C(24)-C(23)	119.5(7)
C(35)-P(2)-Ru(1)	115.9(2)	C(25)-C(26)-C(27)	119.5(6)
C(23)-P(2)-Ru(1)	119.0(2)	C(3)-C(2)-C(1)	119.4(6)
C(29)-P(2)-Ru(1)	118.8(2)	C(29)-C(34)-C(33)	119.2(7)
C(12)-P(1)-C(11)	100.2(3)	C(6)-C(7)-C(8)	111.6(6)
C(12)-P(1)-C(18)	102.4(3)	C(7)-C(6)-C(4)	112.5(6)
C(11)-P(1)-C(18)	105.1(3)	N(2)-C(1)-C(2)	121.3(6)
C(12)-P(1)-Ru(1)	128.0(2)	C(14)-C(13)-C(12)	122.1(7)
C(11)-P(1)-Ru(1)	101.3(2)	C(26)-C(27)-C(28)	119.6(7)
C(18)-P(1)-Ru(1)	116.5(2)	C(2)-C(3)-C(4)	121.0(7)
C(9)-N(1)-C(10)	110.6(5)	C(34)-C(33)-C(32)	122.9(7)
C(9)-N(1)-Ru(1)	106.5(3)	C(33)-C(32)-C(31)	114.8(7)
C(10)-N(1)-Ru(1)	116.3(4)	C(16)-C(17)-C(12)	118.1(8)
C(1)-N(2)-C(5)	118.6(5)	C(35)-C(36)-C(37)	121.5(7)
C(1)-N(2)-Ru(1)	126.4(4)	C(26)-C(25)-C(24)	123.4(7)
C(5)-N(2)-Ru(1)	114.9(4)	C(13)-C(14)-C(15)	119.3(7)
C(3)-C(4)-C(5)	117.0(6)	C(20)-C(21)-C(22)	119.0(7)
C(3)-C(4)-C(6)	121.4(6)	C(31)-C(30)-C(29)	121.6(7)
C(5)-C(4)-C(6)	121.6(6)	C(16)-C(15)-C(14)	118.9(7)
C(36)-C(35)-C(40)	117.8(6)	C(69)-C(22)-C(21)	120.1(7)
C(36)-C(35)-P(2)	121.5(6)	C(15)-C(16)-C(17)	123.4(8)
C(40)-C(35)-P(2)	120.7(5)	C(38)-C(37)-C(36)	120.9(7)
N(2)-C(5)-C(4)	122.6(6)	C(10)-C(11)-P(1)	108.1(4)
N(2)-C(5)-C(9)	115.8(5)	C(22)-C(69)-C(18)	122.3(7)
C(4)-C(5)-C(9)	121.6(5)	C(21)-C(20)-C(19)	119.9(7)
C(39)-C(40)-C(35)	118.3(6)	C(30)-C(31)-C(32)	122.5(7)
C(34)-C(29)-C(30)	118.8(6)	C(30)-C(29)-P(2)	125.1(5)
C(34)-C(29)-P(2)	115.8(5)	C(69)-C(18)-C(19)	118.7(6)

G. References

- 1. B. Pan, B. Liu, E. Yue, Q.-B. Liu, X. -Z. Yang, Z. Wang and W. -H. Sun, ACS Catal. 2016, 6,1247.
- 2. Z. Wang, X.-Y. Chen, B. Liu, Q.-B. Liu, G. A. Solan, X. -Z. Yang and W-H. Sun, *Catal. Sci. Technol.* 2017,7, 1297.
- 3. R. Adam, E. Alberico, W. Baumann, H.-J. Drexler, R. Jackstell, H. Junge and M. Beller, *Chem. Eur.* J. 2016, 22, 4991.
- 4. C. Vicent and D. G. Gusev, ACS Catal. 2016, 6, 3301.

5. (a) D. Spasyuk, D.G. Gusev, *Organometallics*, 2012, 31, 5239. (b) M. Bertoli, A. Choualeb, A.J. Lough, B. Moore, D. Spasyuk, D.G. Gusev, *Organometallics*, 2011, 30, 3479.

6. (a) W. Baratta, G. Chelucci, S. Gladiali, K. Siega, M. Toniutti, M. Zanette, E. Zangrando and P. Rigo, *Angew. Chem. Int. Ed.* 2005, 44, 6214. (b) R. J. Hamilton and S. H. Bergens, *J. Am. Chem. Soc.* 2008, 130, 11979.