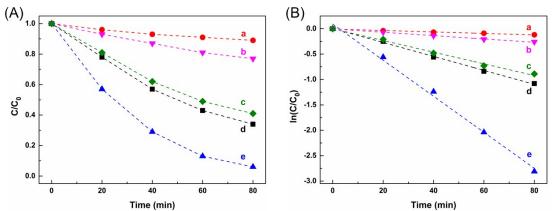
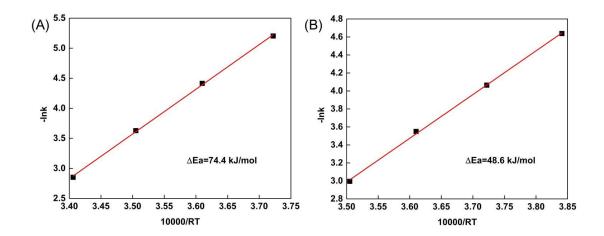
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017


Supporting Information

Graphene-supported CoS₂ Particles: an Efficient Photocatalyst for

Selective Hydrogenation of Nitroaromatics in Visible Light


Ben Ma,^{a,b} Yingyong Wang,*a Xili Tong,a Xiaoning Guo,a Zhanfeng Zheng a and Xiangyun Guo*a

^b University of the Chinese Academy of Sciences, Beijing 100039, China.

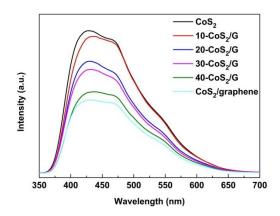


Figure S1 Plots of C_t/C_0 versus reaction time and $ln(C_t/C_0)$ versus reaction time for the catalytic reduction of nitrobenzene to aniline over CoS_2 catalyst in the dark (a) and under light (d); CoS_2 /graphene in the dark (b), under light (e) and using water as solvent under light (c).

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.

Figure S2 The activation energy determinations of CoS_2 (A) and CoS_2 /graphene (B) under visible light based on the Arrhenius equation.

Figure S3 Photoluminescence spectra of CoS_2 , $10-CoS_2/G$, $20-CoS_2/G$, $30-CoS_2/G$, $40-CoS_2/G$ and CoS_2/g raphene (excitation wavelength, 280 nm).

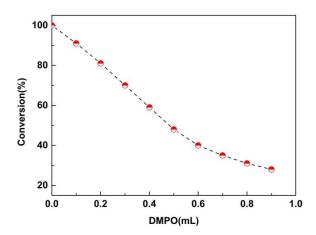
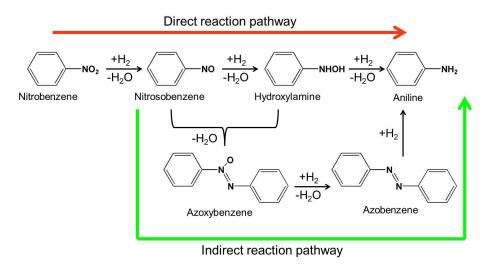



Figure S4 Dependence of nitrobenzene conversion on the volume of DMPO.

Scheme S1 Proposed mechanism for nitrobenzene reduction.

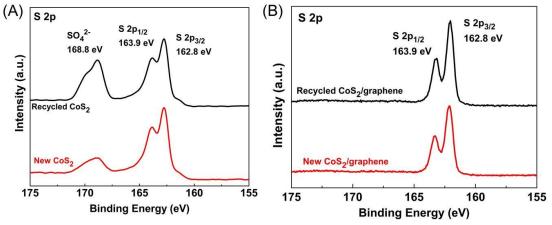


Figure S5 XPS profiles of recycled and new CoS2 (A), and recycled and new CoS2/graphene (B).

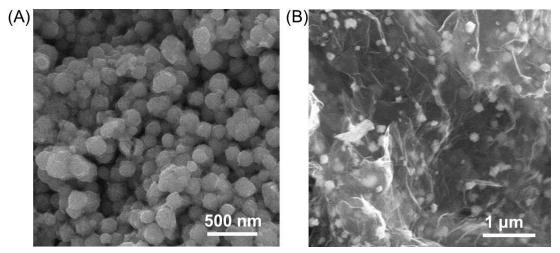


Figure S6 FESEM images of recycled CoS₂ (A) and CoS₂/graphene (B) catalysts.

Table S1. Hydrogenation of nitrobenzene to aniline on various catalysts.

Entry	Catalyst	t/h	T/ºC	H ₂ /MPa	Conv. (%)	Select. (%)	Ref.
1 ^[a]	Au/TiO ₂ -Con	7	90	1.0	71.1	93.1	[1]
2 ^[b]	Ru@C ₆₀	48	80	0.3	100	80	[2]
3[c]	Co@C	10	140	1.0	95	99	[3]
4 [d]	FeS_2	6.5	90	1.0	52.2	99	[4]
5 ^[e]	CoS ₂ /graphene	1.5	30	0.25	99	100	Present work

 $^{^{\}rm a}$ Reaction condition: 40 mg of catalyst, 0.8 mmol nitrobenzene, 3 mL of ethanol solvent, 1.0 MPa of H₂. $^{\rm b}$ Reantion condition: 5 mg of catalyst, 4.06 mmol nitrobenzene,30 ml of ethanol, 0.3 MPa of H₂. $^{\rm c}$ Reaction condition: 30 mg of catalyst, 0.5 mmol nitrobenzene, 2 mL of toluene solvent, 1.0 MPa of H₂. $^{\rm d}$ Reaction condition: 80 mg of catalyst, 5.0 mol nitrobenzene, 10 mL of isopropanol, 1.0 MPa of H₂. $^{\rm e}$ Reaction condition: 40 mg of catalyst, 1.0 mmol nitrobenzene, 10 mL of neat ethanol, 0.25 MPa of H₂. And the reaction was carried out under Xe lamp irradiation (400–800 nm) with light intensity of 0.45 W/cm².

References

- 1 L. Wang, J. Zhang, H. Wang, Y. Shao, X. H. Liu, Y. Q. Wang, J. P. Lewis and F. S. Xiao, *ACS Catal.* **2016**, *6*, 4110-4116.
- 2 F. Q. Leng, I. C. Gerber, P. Lecante, S. Moldovan, M. Girleanu, M. R. Axet and P. Serp, *ACS Catal.* **2016**, *6*, 6018-6024.
- 3 L. C. Liu, P. ConcepciÓn and A. Corma, J. Catal. 2016, 340, 1-9.
- 4 B. Ma, X. L. Tong, C. X. Guo, X. N. Guo, X. Y. Guo and F. J. Keil, RSC Adv. 2016, 6, 55220.