Supporting Information

A Phosphorous-Rich Polymer as a Homogeneous Catalyst Scavenger

Tyler J. Cuthbert, Erin Evoy, John-Paul J. Bow, Ryan Guterman, James M. Stubbs, Elizabeth R. Gilles, Paul J. Ragogna* and Johanna M. Blacquiere*

Department of Chemistry University of Western Ontario London, Ontario, Canada, N6A 5B7

Table of Contents	
I General Procedures, Materials, Instrumentation and Syntheses	S1
II Solid-State ³¹ P{ ¹ H} NMR Spectra	
III SEM/EDX Data	S6
IV References	S7

I General Procedures, Materials and Instrumentation.

All reactions were manipulated under N₂ using standard Schlenk or glovebox techniques. All glassware was oven dried prior to use. RhCl(PPh₃)₃ and PEt₃ (90%) were used as received. Styrene (\geq 99%) and diethyldiallylmalonate (98%) were degassed by purging with N₂ and stored over 4 Å sieves. TMEDA was dried over CaH and distilled prior to use. RuCl₂(PCy₃)₂(=CHPh) (GI) was gifted and purified by successive washings with acetone and pentane. SPN1 was prepared according to literature procedures.¹ Dry and degassed solvents were obtained from an Innovative Technology 400-5 Solvent Purification System and stored over 4 Å molecular sieves (Fluka and activated at 150 °C for 12 h) under N₂ unless otherwise noted. Chloroform-*d* (99.8%) was obtained from Cambridge Isotope Laboratories, was dried with 4 Å molecular sieves and degassed by bubbling with N₂.

All solution-state NMR spectra were recorded on either an Inova 600 MHz or Mercury 400 MHz instrument. ¹H spectra acquired were referenced internally against the residual solvent signal to TMS at 0 ppm. ³¹P spectra were referenced externally to 85% phosphoric acid at 0.00 ppm. Solid-state ³¹P NMR experiments were performed using a Varian Infinity Plus 400 NMR spectrometer (v_L (³¹P = 161.71 MHz) equipped with a Varian 4 mm triple-resonance HXY magic-angle spinning NMR probe. Chemical shifts were referenced with respect to the ³¹P NMR peak of H₃PO₄ (δ (³¹P) = 0.0 ppm) by setting the ³¹P NMR peak of solid ammonium dihydrogen phosphate to +0.81 ppm. The powder samples were stored inside a glove box filled with nitrogen gas and packed tightly into 4 mm o.d. ZrO₂ rotors, then sealed. For the samples having low glass-transition temperature samples, the NMR spectra were acquired using a standard one pulse sequence with high-power ¹H TTPM decoupling, 12.0 kHz spinning rate, 50 kHz spectral width, between 140-160 scans, a 1.8 µs π /4-pulse width, 30 s recycle delay and 20.4 ms acquisition time, and a 6.25 µs TPPM ¹H decoupling pulse with 83 kHz decoupling field. For samples having high glass-transition temperature samples, the NMR spectra were acquired using rots-50 kHz spinning rate, 50 kHz

spectral width, between 164-380 scans, 4.6 μ s ¹H π /2-pulse width, 1 ms contact time, 15 s recycle delay, between 8.5-20.4 ms acquisition time, and a 6.25 μ s TPPM ¹H decoupling pulse with 83 kHz decoupling field. In hydrogenation reactions, styrene and ethylbenzene were quantified relative to an internal standard (cyclodecane) and analyzed with an Agilent 7890A GC-FID with an HP-5 column. Authentic samples of each were used to construct calibration curves. ICP-MS samples were first digested in aqua-regia for 2 hours then data was collected on an Agilent 7700 Series ICP-MS. SEM and EDX analysis were performed using a LEO (Zeiss) 1540XB SEM at Western's Nanofab facility, equipped with an Oxford X-Max 50 x-ray detector. The backscattering detector is a four-quadrant backscattered electron detector, Type 815/U. SEM images were collected at an acceleration voltage of 1kV, and EDX spectra were collected at 10kV. Backscattering detection was used to identify potential Pd nanoparticles in the sample.

Preparation of Rh-SPN1

RhCl(PPh₃)₃ (**WI**) (42 mg, 0.0449 mmol) and **SPN1** (45 mg) were stirred in CH₂Cl₂ (20 mL) at room temperature for 24 hours. A colour change of the solution from deep red to orange was observed. The resulting functionalized polymer (orange) **Rh-SPN1** was washed with CH₂Cl₂ (3 × 30 mL) and pentane (1 × 30 mL). After the final wash **Rh-SPN1** was suspended in pentane and dried *in vacuo*. Elemental Analysis by ICP-MS (μ g g⁻¹): Rh, 71 200; P, 56 600; S, 61 200.

General Procedure for the Catalytic Hydrogenation of Styrene

In a glovebox, the following stock solutions were prepared: styrene (104 mg, 1 mmol, 500 mM) in toluene (2.00 mL); tetradecane (70 mg, 0.25 mmol, 250 mM) in toluene (2.00 mL); WI (9.3 mg, 0.01 mmol, 10 mM) in CH₂Cl₂ (1.00 mL). To a 100 mL Schlenk flask containing a stir bar, the catalyst stock solution was added (200 μ L), and CH₂Cl₂ was removed *in vacuo*. Added to the same flask was a portion of the styrene (400 μ L) and cyclodecane (400 μ L) stock solutions. Toluene was added (5.20 mL) to give a final volume of 6.00 mL and the flask was sealed with a rubber septum. The final concentrations of the reaction mixture were 33.0 mM styrene, 8.3 mM cyclodecane, and 0.33 mM WI (1 mol%). The flask was removed from the glovebox and H₂ gas was bubbled into solution for 2 minutes using a needle pierced through the rubber septum of the Schlenk flask. The contents were allowed to stir at room temperature and every 10 minutes for 90 minutes, 200 μ L aliquots were removed and exposed to air to quench. From each aliquot, 150 μ L was removed and diluted with acetone (850 μ L) giving final concentrations of 5 mM for styrene and tetradecane and the diluted samples were analyzed by calibrated GC-FID.

General Procedure for the Quenching of the Hydrogenation of Styrene

The procedure for the catalytic hydrogenation of styrene was followed as outlined above. Added to the reaction set-up, prior to addition of **WI**, was an excess of **SPN1** (32 mg, 0.04 mmol, ca. 1.5 mol P equiv.). **SPN1** was present from the outset and 200 μ L aliquots taken at 10 minutes intervals, up to 50 minutes. From each aliquot 150 μ L was removed and diluted with acetone (850 μ L) giving final concentrations of 5 mM for styrene and tetradecane and the diluted samples were analyzed by calibrated GC-FID. After the final aliquot for GC-FID analysis was taken from the quenched reaction, the mixture was allowed to stir for 24 hours. The mixture was then taken up in a syringe and filtered through a syringe filter (Promax Syringe Filter, 13 mm, 0.22 μ m PTFE) into a preweighed vial. Solvent was removed *in vacuo* leaving a residue. The residue was submitted for ICP-MS analysis, for a comparison of the trace metal amounts in each sample.

Scavenging of GI following RCM of Diethyl diallylmalonate

Diethyl diallylmalonate (488 mg, 2.12 mmol), **GI** (16.4 mg, 0.02 mmol), and CH_2Cl_2 (20 mL) were combined in a Schlenk round bottom in a glovebox with a stir bar. The flask was removed from the glovebox and heated to 30 °C in an oil bath for 1 hour under an N₂ atmosphere. The resulting solution was brought back into the glovebox, and divided into 1 mL portions in small glass vials with a specific amount of **SPN1** (1, 5, or 10 mg) with a stir bar. An additional portion was added to a vial that did not contain **SPN1** to act as the control. The vials were capped, sealed with Teflon tape and stirred for a specific amount of time (20 minutes, 12, 24, 48, and 72 hours) at room temperature. The mixtures were filtered through a 0.2 µm syringe filter into a tared vial. The reaction vial was washed with 1 mL of CH_2Cl_2 and filtered through the same filter and combined with the initial filtrate. The filtrate solvent was removed *in vacuo* and the mass recorded. These resulting solids were digested with aqua regia (1 mL) and analyzed by ICP-MS for Ru content. The Ru content was compared to the control sample that was also filtered, the volatiles were removed in vacuo and a mass was measured prior to digestion (aqua regia) and ICP-MS analysis.

Preparation of Ru-SPN1 and regeneration to remove Ru

SPN1 (400 mg), **GI** (32.8 mg, 0.04 mmol), and CH₂Cl₂ (40 mL) were combined with a stir bar in a Schlenk round bottom and stirred for 24 hours under an N₂ atmosphere. The yellow solid was isolated using a Pall MicrosepTM Advanced Centrifugal Device with a 10 kg/mol molecular weight cut off. The resulting solid was washed with CH₂Cl₂ and isolated, and this was repeated two additional times. The solid was dried *in vacuo* and divided into 100 mg samples into four glass vials (A-D) with stir bars. Samples A-C were subjected to 3 mL of neat regeneration conditions: PEt₃ at room temperature, PEt₃ at 80 °C, and tetramethyl ethylene diamine (TMEDA) at room temperature. The solutions were then stirred for 24 hours at the desired temperature under N₂. The solid was allowed to settle, and was isolated by filtration with a MicrosepTM Centrifugal Device and washed with three portions of CH₂Cl₂. The solid was then dried *in vacuo*, and analyzed by ICP-MS and solid-state ³¹P NMR spectrscopy. The final sample D underwent the same procedure except it was not subjected to the regeneration step. This sample was also analyzed by ICP-MS and solid-state ³¹P NMR spectrscopy.

Scavenging of Pd following Suzuki Coupling

In a glovebox, the following stock solutions were prepared: bromobenzene (77 mg, 0.49 mmol, 830 mM) and dimethyl terephthalate (31 mg, 0.16 mmol, 270 mM) in DMF (590 μ L); 4-methylbenzeneboronic acid (75 mg, 0.55 mmol, 870 mM) in DMF (630 μ L); Pd(OAc)₂ (10 mg, 0.045 mmol, 15 mM) in DMF (3000 μ L); PCy₃ (18 mg, 0.064 mmol, 63 mM) in DMF (1.000 μ L). To 3 vials (A-C) containing stir bars and K₂CO₃ (22.9 mg, 0.166 mmol) the following was added: 100.0 μ L of bromobenzene/dimethyl terephthalate, 100 μ L of 4-methylboronic acid, 166 μ L of Pd(OAc)₂, and 100.0 μ L of PCy₃. This gives a final catalyst loading of 3 mol% (10483 ppm). An additional 34 μ L of DMF was added to all of vials to give a final volume of 500 μ L. All vials were sealed, removed from the glovebox and placed on a hotplate at 110 °C with stirring. At time points of 24 hours all five vials were removed from the heat, cooled, and taken back into the glovebox. One vial (A) was checked by ¹H NMR showing complete conversion of bromobenzene to 4-tolylbenzene. SPN polymer (25 mg) was added to a vial (B) and left to stir. After 24 h, vial B and C were both filtered using a 0.2 μ m syringe filter. The precipitate removed

on these syringe filters was used for SEM analysis. The solvent for each vial was removed at 75 °C under vacuum in tared vials to find the mass of the remaining residue. The residue was digested using 2 mL of aqua regia at 50 °C for 4 h for ICP analysis. The proportion of Pd in the resulting residues were: B, 622 ppm (94% Pd removal); C, 3494 ppm (67% Pd removal).

Figure S1. SS-³¹P{¹H} NMR spectrum (161.71 MHz) of **SPN1** acquired with a standard one pulse sequence. The signal a $\delta = -32$ corresponds to tertiary phosphine sites, the broad signals at $\delta = ca$. 50 are consistent with phosphine oxide sites.

Figure S2. SS-³¹P{¹H} NMR spectrum (161.71 MHz) of **Ru-SPN1** acquired with a standard one pulse sequence. The signal a $\delta = -32$ corresponds to tertiary phosphine sites, the broad signals at $\delta = ca$. 50 are consistent with phosphine oxide sites.

Figure S3. SS-³¹P{¹H} NMR spectrum (161.71 MHz) of **Ru-SPN1** acquired with a cross polarization pulse sequence. The signal a $\delta = -32$ corresponds to tertiary phosphine sites, the broad signals at $\delta = ca$. 50 are consistent with phosphine oxide sites. The broad signals in the range of 0–40 ppm are consistent with Ru-phosphine adduct formation.

III SEM/EDX Data

•

Electron Ima

c)

Element	Weight%	Atomic%
СК	32.09	45.92
ОК	37.92	40.74
FΚ	1.23	1.12
РК	2.93	1.63
S K	2.95	1.58
КК	19.52	8.58
Br L	0.80	0.17
Pd L	0.33	0.05
Os M	2.22	0.20
Totals	100.00	

Figure S4. Analysis of the SPN polymer after Pd sequestration from a Suzuki coupling reaction. a) SEM image; b) EDX spectra collected at 15 kV; and c) Element compositions as determined by EDX analysis. The data is consistent with the composition for the **SPN** polymer containing low levels of Pd throughout.

Figure S5. Analysis of the **SPN** polymer after Pd sequestration from a Suzuki coupling reaction. a) SEM images showing the only observed evidence of a nanoparticle associated with the polymer (see bright spot on the bottom image visualized using a backscatter detector); b) EDX spectra; and c) Element compositions of the potential Pd nanoparticle.

IV Reference

1. R. Guterman, A. Rabiee Kenaree, J. B. Gilroy, E. R. Gillies and P. J. Ragogna, *Chem. Mater.*, 2015, **27**, 1412-1419.