Ni(II)-N'NN' Pincer Complexes Catalyzed Dehydrogenation of

Primary Alcohols to Carboxylic acids and H₂ Accompanied by the

Alcohol Etherification

Zengjin Dai, Qin Luo, Huan Jiang, Qi Luo, Hua Li, Jing Zhang* and Tianyou Peng*

College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China

E-mail addresses: jzhang03@whu.edu.cn (J. Zhang), typeng@whu.edu.cn (T. Peng)

Supporting Information

Table of Contents

Solvent screening for acceptorless dehydrogenation of benzyl alcohol to benzoic			
acid catalyzed by complex 1	.2		
The H ₂ detection and production	.2		
Analysis of products in organic phase by using 4-methylbenzyl alcohol as the			
substrate	.4		

Solvent screening for acceptorless dehydrogenation of benzyl alcohol to benzoic acid catalyzed by complex 1

To an oven-dried 25mL schlenk tube, benzyl alcohol (0.54 g, 5 mmol), CsOH·H₂O (5 mmol, 0.84 g) and complex **1** (25 μ mol, 11.0 mg) were charged with 1 mL solvent, and the solution was heated at 150°C (oil bath) under argon atmosphere for 24 h. After cooling to room temperature, degassed water (5 mL) was added and the mixture was extracted with diethyl ether (3 × 5 mL). The aqueous phase was acidified with 6M HCl and extracted with ethyl acetate (3 × 10 mL). The combined ethyl acetate solution were washed with brine (15 mL), dried over anhydrous Na₂SO₄, and evaporated to dryness under reduced pressure, the white solid of the pure benzoic acid was obtained and weighted for calculating the yield. Yield=n(benzoic acid)/n(CsOH).

Entry Solvent Yield (%)
I Ioluene 6
2 1,4-dioxane 5
3 H ₂ O Trace
4 Benzyl alcohol 10

The H₂ detection and production

Under an argon atmosphere, benzyl alcohol (2.16 g, 20 mmol), sodium benzyloxide (5 mmol, 0.65 g) and complex **3** (19.0 mg, 50 μ mol) were added to a 25 mL schlenk tube which is connected to a 1000 mL distillation collection ball with one neck sealed by a rubber septum. Then the reaction mixture was heated at 150°C (oil bath). The inner gas was taken out by a 100 μ L micro-injector after 6 h, and sent to GC for analysis, hydrogen gas was determined by comparing to the standard sample.

GC spectrum of standard hydrogen gas

The H₂ gas collection

Under an argon atmosphere, benzyl alcohol (10.8 g, 100 mmol, excess), sodium benzyloxide (1.30 g,10 mmol), and complex **1** (0.11 g, 0.25 mmol, 2.5 mol%) were added to a 100 mL schlenk tube which is connected with a gas collection instrument through gravity drainage method. The reaction mixture was heated at 150°C (oil bath) and the volume of produced gas was recorded in the due time. A blank experiment without catalyst was taken at the same condition. The standard atmospheric pressure P=101.325 kPa; room temperature T=291.15K; the corresponding water saturated vapor pressure under the temperature P₀=2.0644 kPa. The amount of H₂ was calculated by Van der Waals equation: (P-P₀)V=nRT (R=8.314 kPa·L·mol⁻¹·K⁻¹).

ОН	1) 1 (2.5 mol%), base, 150°C 2) HCl	COOH + 2 H₂
time (h)	V (H ₂) (mL)	n(H ₂) (mmol)
2	27	1.11
3	42	1.72

4	70	2.87	
5	94	3.86	
6	98	4.02	
7	105	4.31	
8	105	4.31	
9	111	4.55	

After the H₂ collection experiment, the reaction mixture was treated with extraction operation, which afforded 0.24 g pure benzoic acid (1.96 mmol). $n(H_2)/n(benzoic acid) \approx 2:1$.

Analysis of products in organic phase using 4-methylbenzyl alcohol as the substrate

4-Methylbenzyl alcohol (2.44 g, 20 mmol), sodium 4-methylbenzyloxide (0.72 g, 5.0 mmol) and complex **3** (19.0 mg, 50 μ mol) were charged in a 25 mL schlenk tube, and the reaction mixture was heated at 150°C for 48 h under the argon atmosphere. After cooling to room temperature, degassed water (10 mL) was added and the mixture was extracted with diethyl ether (3 ×10 mL). The aqueous phase was acidified with 6M HCl and extracted with ethyl acetate (5 × 20 mL). The combined ethyl acetate solution were washed with brine (25 mL), dried over anhydrous Na₂SO₄, and evaporated to dryness under reduced pressure, in which the pure 4-methylbenzoic acid (0.47g, 69%) was obtained. The products in organic phase were separated by column chromatography using silica gel (elute: petroleum ether/ethyl acetate 40/1 (V/V)). The products were characterized by NMR analysis (relaxation time d1=20 s) with standard samples and weighted for calculating the yields.

P-xylene was obtained as a colorless oil weighted 0.11 g (1.03 mmol);

Ester, ether, aldehyde were collected as mixtures.

1) Mixture of ether and trace amount of ester, weighted 0.09 g (deuterated solvent: CDCl₃);

2) Mixture of ether and aldehyde, weighted 0.37 g (deuterated solvent: CDCl₃);

3) Mixture of ether and aldehyde, weighted 0.16 g (deuterated solvent: CDCl₃).

The amounts of products were listed below according to the calculation:

