Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Polymers from biomass: One pot two steps synthesis of furilydenepropanenitrile derivatives with MIL-100 (Fe) catalyst

Anastasia Rapeyko, Karen S. Arias, Maria J. Climent, Avelino Corma*, Sara Iborra*

Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, (Spain) Fax: (+34) 963877809 E-mail: acorma@itq.upv.es siborra@itq.upv.es

Fe(BTC)

Cu₃(BTC)₂

6µm

βμη

MIL100 (Fe)

MIL100 (Fe)-NH₄F

Figure S1. SEM image analysis of different MOFs

Figure S2. XRD patterns of (a) $Cu_3(BTC)_2$, (b) Fe(BTC), (c) MIL-100(Fe) and (d) MIL-100 (Fe)-NH₄F.

Figure S3. DFF yield versus time plot for the aerobic oxidation of HMF to DFF catalyzed by MIL-100 (Fe)-NH₄F. Reaction Conditions: HMF (1 mmol, 126 mg), catalyst (45 mg, 0.17 mmol of Fe); TEMPO (0.076 mmol, 12 mg); NaNO₂ (0.14 mmol; 10 mg); CH₃CN (5 mL) at 75 °C under atmospheric pressure of oxygen.(\Box) HMF; (\blacksquare) DFF.

Figure S4. Conversion of 5-HMF versus time plot for oxidation of 5-HMF during reuses of MIL-100 (Fe)-NH₄F. Reaction conditions: 5-HMF (1 mmol, 126 mg); MIL-100 (Fe)-NH₄F (45 mg); TEMPO (0.076 mmol; 12 mg); NaNO₂ (0.14 mmol, 10 mg); at 75 °C, in CH₃CN -5ml under atmospheric pressure of oxygen. 1st cycle (\blacksquare), 2nd cycle (\blacklozenge), 3th cycle(\blacklozenge).

Figure S5. IR spectra of MIL-100(Fe)-NH₄F a) fresh and b) reused catalyst

Figure S6. Leaching test of MIL-100 (Fe)-NH₄F catalysts.

Catalyst	Metal content (wt %)	S _{BET} (m²/g)	Total pore volume V _{total} (cm ³ /g)	Crystal size (μm)
Fe(BTC)	21	613	0.36	0.48
MIL-100 (Fe)-NH ₄ F	21	1370	0.84	0.57
MIL-100 (Fe)	20	993	0.69	0.47
Cu ₃ (BTC) ₂	25	1341	0.75	8.70
HY-Fe	5.3	544	0.46	-

 Table S1. Physical and chemical properties of different studied catalysts

