Supporting Information

Identification of Activity Trends for CO Oxidation on Supported

Transition-Metal Single Atom Catalysts

Haoxiang Xu,^{†,|} Cong-Qiao Xu,^{‡,|} Daojian Cheng,^{*,†} and Jun Li^{*,‡}

[†]Beijing Key Laboratory of Energy Environmental Catalysis, State Key Laboratory of Organic-

Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

[‡]Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

(*) corresponding authors: chengdj@mail.buct.edu.cn; junli@tsinghua.edu.cn; junli@tsinghua.edu.cn"/>junli@tsinghua.edu.cn; <a href=

bond	occupancy	atomic center	hybridization	
		(contribution, %)	(function, %)	
σ(Cu-O)	0.96	Cu(16)	s 78, p 6, d 16	sp ^{0.08} d ^{0.21}
		O(84)	s 12, p 88	sp ^{7.33}
σ(Ag-O)	0.95	Ag(12)	s 91, p 6, d 4	$sp^{0.07}d^{0.04}$
		O(88)	s 3, p 97	sp ^{32.33}
σ(Au-O)	0.96	Au(25)	s 78, p 3, d 19	$sp^{0.04}d^{0.24}$
		O(75)	s 4, p 96	$sp^{24.00}$
σ(Ni-O)	1.94	Ni(17)	s 58, p 4, d 37	$sp^{0.07}d^{0.64}$
		O(84)	s 18, p 82	sp ^{4.56}
σ(Pd-O)	1.92	Pd(13)	s 77, p 7, d 17	sp ^{0.09} d ^{0.22}
		O(87)	s 8, p 92	$sp^{11.50}$
σ(Pt-O)	1.95	Pt(24)	s 57, p 4, d 39	$sp^{0.07}d^{0.68}$
		O(76)	s 12, p 88	sp ^{7.33}

Table S1. NBOs results of M/MgO (M = Cu, Ag, Au, Ni, Pd, Pt)

Table S2. Reaction energy barriers (in eV) for ER reaction steps leading to the formation of CO_2

SACs		ER	
		$\Delta E1$	$\Delta E2$
Regular MgO	Au	1.03	0.89
	Ag	0.52	1.27
	Cu	0.58	1.36
	Pt	0.77	1.24
	Pd	1.01	1.53
	Ni	0.64	1.00
Fs-defected MgO	Au	0.52	1.14
	Ag	0.10	1.42
	Cu	0.50	1.41
	Pt	0.47	1.48
	Pd	0.83	1.64
	Ni	0.46	1.21

Table S3. The bond distances $d(O_2)$ for co-adsorbed CO and O_2 on SACs/MgO and SACs/Fs-defected MgO; and the calculated excess electronic charge on the adsorbed molecules $\delta Q(O_2)$

	(=)		
Metal	surface	$d(O_2)$ (Å) ^a	$\delta Q(O_2)(e)$
Δα	regular	1.319	0.44
Ag	Fs-defected	1.330	0.51
Cu	regular	1.364	0.55
Cu	Fs-defected	1.384	0.58
NI	regular	1.293	0.26
INI	Fs-defected	1.313	0.32

^{*a*} The calculated values for the isolated molecules are $d(O_2) = 1.236$ Å, compared to the gas-phase experimental values of 1.21 Å, respectively.

Figure S1. Schematic representation of SACs hopping diffusion mechanism of M/MgO (M = Cu, Ag, Au, Ni, Pd, Pt) (Color scheme: O, red; Mg, green; M, yellow).

Figure S2. (a-b) Top view and (c-d) side view of HOMO of the regular and Fsdefected MgO(100) surface. The isosurface charge density was taken to be 0.001 e/Å^3

Figure S3. NBO contours of M/MgO (M = Cu, Ag, Au, Ni, Pd, Pt) (isovalue = 0.03 a.u.).

Figure S4. SSAdNDP chemical bonding (5c-2e σ interactions between M and four neighboring O atoms) of M/Fs-defected MgO (M = Cu, Ag, Au, Ni, Pd, Pt) (isovalue = 0.03 a.u.).

Figure S5. (a) Charge localized on O_2 (blue lines), Ag (red lines), and the total charge on Ag- O_2 (black lines) for the free and supported Ag- O_2 system. (b) Charge localized on O_2 (blue lines), Cu (red lines), and the total charge on Cu- O_2 (black lines) for the free and supported Cu- O_2 system. Fs-MgO denotes Fs-defected MgO.

Figure S6. Spin polarized LDOS projected onto the O_2 molecule and PDOS projected on the metal atom: (a) O_2 adsorbed on Ag atom, (b) O_2 adsorbed on Ag atom with regular MgO support, (c) O_2 adsorbed on Ag atom with Fs-defected MgO support, and (d-f) Similar to a-c, respectively, but for Cu. Fs-MgO denotes Fs-defected MgO.

Figure S7. Schematic configurations of different states along the minimum-energy pathway via ER mechanism of CO oxidation on the (a) M/MgO and (b) M/F_s -MgO (M = Cu, Ag, Au, Ni, Pd and Pt). Color scheme: Red, green, grey and blue balls represent O, Mg, C and M atoms, respectively. Fs-MgO denotes Fs-defected MgO.

Figure S8. Schematic configurations of different states along the minimum-energy pathway via MvK mechanism of CO oxidation on the Ag/MgO. Color scheme: Red, green, grey and blue balls represent O, Mg, C and Ag atoms, respectively.

Figure S9. Schematic configurations of different states along the minimum-energy pathway via LH mechanism of CO oxidation on the Cu,Pd,Pt,Ni/Fs-defected MgO. Color scheme: Red, green, grey, pink balls represent O, Mg, C, Metal atoms, respectively.