Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

SUPPORTING INFORMATION

Table TS1. Comparison of H_2 evolution from $g-C_3N_4$ based hybrid structures in the literature and present work.

a C N. Mornhology	Sacrificial	Wavelength	Lamp Hydrogen		Referen
g-C ₃ N ₄ Morphology	agent	(nm)	power (W)	evolution	ce
TiO2/Pt/g-C3N4	TEOA	≥420	300	178 μmol.h ⁻¹	S1
Strontium pyroniobate/g-C ₃ N ₄	Methanol	420	300	57.5 μmol.h ⁻¹	S2
Ni(OH) ₂ -CdS/g-C ₃ N ₄	Na ₂ S/Na ₂ SO ₃	420	300	115.18 μmol.g ⁻¹ .h ⁻¹	S3
g-PAN/g-C3N4	TEOA	>400	300	37 μmol.h ⁻¹	S4
Cd _{0.2} Zn _{0.8} S/g-C ₃ N ₄	Na ₂ S/Na ₂ SO ₃	>420	300	208 μmol.h ⁻¹	S5
MgFe ₂ O ₄ /g-C ₃ N ₄	TEOA	>420	300	30.09 μmol.h ⁻¹	S6
Ag ₂ O/g-C ₃ N ₄	TEOA	>420	300	~34 µmol.h ⁻¹	S7
CaIn ₂ S ₄ /g-C ₃ N ₄	Na ₂ S/Na ₂ SO ₃	420 nm	UV LEDs	102 μmol.g ⁻¹ .h ⁻¹	S8
CdS/Au/g-C ₃ N ₄	Methanol	>420	Not provided	19.02 μmol.g ⁻¹ .h ⁻¹	S 9
TiO ₂ /g-C ₃ N ₄	NaI	365	8.3 mW/cm ²	45.6 μmol.h ⁻¹	S10
Ni(OH) ₂ /g-C ₃ N ₄	TEOA	≥420	300	240 μmol.g ⁻¹ .h ⁻¹	S11
ZnTiO ₃				56.72 μmol.g ⁻¹	
ZNTCN20	TEOA	>400	300	120.09 μmol.g ⁻¹	Present
ZNTCN60		2700	500	295.88 μmol.g ⁻¹	work
g-C ₃ N ₄				106.22 μmol.g ⁻¹	

Table TS1

Table TS2. Kinetic rate constant data of all pollutants, pure $ZnTiO_3$, pure $g-C_3N_4$, $ZnTiO_3/g-C_3N_4$ with 20 and 60 wt% of $g-C_3N_4$ visible light irradiation toward degradation of MB, phenol, 4-chlorophenol and 4-nitrophenol pollutants. Rate constant for corresponding solution without photocatalysts are also provided for comparison.

Sample details	Kinetic rate constant x 10 ⁻³ min ⁻¹					
	Methylene blue	Phenol	4-chlorophenol	4-nitrophenol		
Without catalyst	0.23	0.31	0.46	0.32		
ZnTiO ₃	2.51	0.95	0.91	2.83		
g-C ₃ N ₄	2.69	2.29	3.06	9.91		
ZnTiO ₃ /g-C ₃ N ₄ 20wt%	3.62	10.17	7.04	15.32		
ZnTiO ₃ /g-C ₃ N ₄ 60wt%	8.53	34.37	17.39	30.64		
P-25 (TiO ₂)	2.45	1.25	0.81	2.08		

Table TS2

Figure S1 The kinetic plots for $ZnTiO_3$, $g-C_3N_4$ and $ZnTiO_3/g-C_3N_4$ samples are provided in (E) MB, (F) Phenol, (G) 4-chlorophenol and (H) 4-nitrophenol. The photocatalytic activity of commercial P-25 (TiO₂) powder is given for comparison.

Figure S1 (A to D)

SUPPORTING REFERENCES

1. B. Chai, T. Peng, J. Mao, K. Li and L. Zan, Physical Chemistry Chemical Physics, 2012, 14, 16745-16752.

2. S. P. Adhikari, Z. D. Hood, K. L. More, V. W. Chen and A. Lachgar, ChemSusChem, 2016, 9, 1869-1879.

3. Z. Yan, Z. Sun, X. Liu, H. Jia and P. Du, Nanoscale, 2016, 8, 4748-4756.

4. F. He, G. Chen, Y. Yu, S. Hao, Y. Zhou and Y. Zheng, ACS Applied Materials & Interfaces, 2014, 6, 7171-7179.

5. H. Liu, Z. Jin and Z. Xu, Dalton Transactions, 2015, 44, 14368-14375.

6. J. Chen, D. Zhao, Z. Diao, M. Wang, L. Guo and S. Shen, ACS Applied Materials & Interfaces, 2015, 7, 18843-18848.

7. M. Wu, J.-M. Yan, X.-W. Zhang, M. Zhao and Q. Jiang, Journal of Materials Chemistry A, 2015, **3**, 15710-15714.

8. D. Jiang, J. Li, C. Xing, Z. Zhang, S. Meng and M. Chen, ACS Applied Materials & Interfaces, 2015, 7, 19234-19242.

9. X. Ding, Y. Li, J. Zhao, Y. Zhu, Y. Li, W. Deng and C. Wang, APL Mater., 2015, 3, 104410.

10. J. Yan, H. Wu, H. Chen, Y. Zhang, F. Zhang and S. F. Liu, Applied Catalysis B: Environmental, 2016, **191**, 130-137.

11. G. Bi, J. Wen, X. Li, W. Liu, J. Xie, Y. Fang and W. Zhang, RSC Advances, 2016, **6**, 31497-31506.