Supporting Information

Photocatalytic Decomposition of Benzene Enhanced by the Heating Effect of Light: Improving Solar Energy Utilization with Photothermocatalytic Synergy

Jialin Fang, Zhangsen Chen, Qun Zheng, Danzhen Li*

State Key Laboratory of Photocatalysis on Energy and Environment, Research
Institute of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
Corresponding author Tel & Fax: (+86)591-83779256, E-mail: dzli@fzu.edu.cn.

Figure S1. The spectra of irradiance for 500 W Xe-arc lamp as simulated solar light source for the experiment of catalytic activity, inserting the magnified graph within

250<λ<800 nm.

Figure S2. The spectra of irradiation of 500 W Xe-arc lamp equipped with a $300 < \lambda < 800$ nm filter as the UV-VIS light source for the photocatalytic experiment of

ESR.

Figure S3. The spectra of irradiation of 500 W Xe-arc lampe quipped with a λ >300 nm filter as simulated solar light source for the photothermocatalytic experiment of

ESR, inserting the magnified graph within $250 < \lambda < 800$ nm.

Figure S4. The spectra of irradiation of 500 W Xe-arc lamp equipped with a λ >800 nm filter as the NIR light source for the thermocatalytic experiment of ESR.

Figure S5 Raman spectra of BVT-Origin, de-BVT, BVT-PCR, BVT-TCR and BVT-

PTCR samples

Figure S6 The photocatalytic conversion of benzene versus time over TiO_2 -Origin, de- TiO_2 , TiO_2 -PCR, TiO_2 -TCR and TiO_2 -PTCR at 30 °C, inserting their color after reaction.

The calculation of apparent rate constant of reaction (k_{app})

The catalyst bed we used can be depicted as follows:

When the steady state is obtained, the mass balance can be depicted as:

$$F_0[C_i - (C_i + dC_i)] = r_i dV \qquad (1)$$

 F_0 : flow rate. C_i : concentration of composition i. r_i : the reaction rate of composition i.

The concentration can be connected with conversion as:

$$x_i = (C_{i,0} - C_i)/C_i$$
 (2)

x_i: conversion of composition i.

According to (1) and (2), the reaction rate r_i can be depicted as:

$$r_i = C_{i,0} dx_i / d(V/F_0)$$
 (3)

Order $F = F_0 C_{i,0}$ and t = V/F which refers to contact time, then (3) can be depicted as:

$$r_i = dx_i/dt$$
 (4)

The reaction of oxidation of benzene corresponds to first-order kinetics, so

$$r_i = kC_i \qquad (5)$$

k:reaction rate constant.

Combining (4) and (5) and considering the weight of catalyst, the apparent rate constant k_{app} can be depicted as:

$$k_{app} = \frac{v}{w} \ln \frac{1}{1 - x}$$

v is the flow rate of benzene (20 mL·min⁻¹); w is the weight of catalyst; x is the

conversion of benzene.

The Arrhenius equation here:

$$\ln k = -\frac{E_a}{RT} + \ln A = -B\frac{1}{T} + \ln A$$

k herein is calculated according to the k_{app} above; E_a is the Arrhenius activation energy; R is the gas constant; T is the reaction temperature; A is the pre-exponential factor.

Figure S7 The ln k_{app} versus 1000T⁻¹ Arrhenius plot for BVT.

*The higher the value of Adj. R-Square, the better linearity.

Figure S8 The ln k_{app} versus 1000T⁻¹ Arrhenius plot for TiO₂.

Figure S9 The ln k_{app} versus 1000T⁻¹ Arrhenius plot for P25.

Figure S10 XPS spectra for Pt 4f for 0.2PBVT, 0.5PBVT, 1PBVT and 2PBVT; XPS

spectra of Ti 2p (b), O 1s (c), Bi 4f (d) and V 2p (d) for 1PBVT

Figure S11 The amount of CO₂ under PTC and TC condition at different

temperatures for 0.2PBVT, 0.5PBVT, 1PBVT and 2PBVT.

Figure S12 The ln k_{app} versus 1000T⁻¹ Arrhenius plot for PBVT.

*The higher the value of Adj. R-Square, the better linearity.

Figure S13 ESR signals of DMPO-·OH and O_2 ·· of BVT, 02PBVT, 05PBVT and 2PBVT under under PC (photocatalytic, see the irradiation graph in Figure S2) and PTC (photothermocatalytic, see the irradiation graph in Figure S3) condition.

Figure S14 O₂-TPD profile of BVT with the process of oxygen adsorption under (A)
80 °C, (B) UV-vis irradiation (irradiation spectra in Figure S2) at ambient temperature,
(C) simulated solar irradiation (irradiation spectra in Figure S3) at 80 °C and the

merge image of (A), (B) and (C).