Supporting Information

Photocatalytic Decomposition of Benzene Enhanced by the Heating Effect of Light: Improving Solar Energy Utilization with Photothermocatalytic Synergy

Jialin Fang, Zhangsen Chen, Qun Zheng, Danzhen Li*

State Key Laboratory of Photocatalysis on Energy and Environment, Research
Institute of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
Corresponding author Tel \& Fax: (+86)591-83779256, E-mail: dzli@fzu.edu.cn.

Figure S1. The spectra of irradiance for 500 W Xe-arc lamp as simulated solar light source for the experiment of catalytic activity, inserting the magnified graph within $250<\lambda<800 \mathrm{~nm}$.

Figure S2. The spectra of irradiation of 500 W Xe-arc lamp equipped with a
$300<\lambda<800 \mathrm{~nm}$ filter as the UV-VIS light source for the photocatalytic experiment of ESR.

Figure S3. The spectra of irradiation of 500 W Xe-arc lampe quipped with a $\lambda>300$ nm filter as simulated solar light source for the photothermocatalytic experiment of ESR, inserting the magnified graph within $250<\lambda<800 \mathrm{~nm}$.

Figure S4. The spectra of irradiation of 500 W Xe-arc lamp equipped with a $\lambda>800$ nm filter as the NIR light source for the thermocatalytic experiment of ESR.

Figure S5 Raman spectra of BVT-Origin, de-BVT, BVT-PCR, BVT-TCR and BVT-
PTCR samples

Figure S6 The photocatalytic conversion of benzene versus time over TiO_{2}-Origin, de- $\mathrm{TiO}_{2}, \mathrm{TiO}_{2}$-PCR, $\mathrm{TiO}_{2}-\mathrm{TCR}$ and TiO_{2}-PTCR at $30^{\circ} \mathrm{C}$, inserting their color after reaction.

The calculation of apparent rate constant of reaction ($k_{\text {app }}$)

The catalyst bed we used can be depicted as follows:

When the steady state is obtained, the mass balance can be depicted as:

$$
F_{0}\left[C_{i}-\left(C_{i}+d C_{i}\right)\right]=r_{i} d V
$$

F_{0} :flow rate. C_{i} : concentration of composition i. r_{i} : the reaction rate of composition i.
The concentration can be connected with conversion as:

$$
\begin{equation*}
x_{i}=\left(C_{i, 0}-C_{i}\right) / C_{i} \tag{2}
\end{equation*}
$$

x_{i} : conversion of composition i.

According to (1) and (2), the reaction rate r_{i} can be depicted as:

$$
\begin{equation*}
r_{i}=C_{i, 0} d x_{i} / d\left(V / F_{0}\right) \tag{3}
\end{equation*}
$$

Order $F=F_{0} C_{i, 0}$ and $t=V / F$ which refers to contact time, then (3) can be depicted as:

$$
r_{i}=d x_{i} / d t
$$

The reaction of oxidation of benzene corresponds to first-order kinetics, so

$$
\begin{equation*}
r_{i}=k C_{i} \tag{5}
\end{equation*}
$$

k :reaction rate constant.

Combining (4) and (5) and considering the weight of catalyst, the apparent rate constant $k_{\text {app }}$ can be depicted as:

$$
k_{a p p}=\frac{v}{w} \ln \frac{1}{1-x}
$$

v is the flow rate of benzene $\left(20 \mathrm{~mL} \cdot \mathrm{~min}^{-1}\right)$; w is the weight of catalyst; x is the
conversion of benzene.

The Arrhenius equation here:

$$
\ln k=-\frac{E_{a}}{R T}+\ln A=-B \frac{1}{T}+\ln A
$$

k herein is calculated according to the $k_{\text {app }}$ above; E_{a} is the Arrhenius activation energy; R is the gas constant; T is the reaction temperature; A is the pre-exponential factor.

Figure S7 The $\ln k_{\text {app }}$ versus $1000 \mathrm{~T}^{-1}$ Arrhenius plot for BVT.
*The higher the value of Adj. R-Square, the better linearity.

Figure S8 The $\ln k_{\text {app }}$ versus $1000 \mathrm{~T}^{-1}$ Arrhenius plot for TiO_{2}.

Figure S9 The $\ln k_{\text {app }}$ versus $1000 \mathrm{~T}^{-1}$ Arrhenius plot for P25.

Figure S10 XPS spectra for Pt 4f for 0.2PBVT, 0.5PBVT, 1PBVT and 2PBVT; XPS spectra of Ti 2p (b), O 1s (c), Bi 4 f (d) and V 2p (d) for 1PBVT

Figure S11 The amount of CO_{2} under PTC and TC condition at different temperatures for $0.2 \mathrm{PBVT}, 0.5 \mathrm{PBVT}, 1 \mathrm{PBVT}$ and 2 PBVT .

Figure S12 The $\ln k_{\text {app }}$ versus $1000 \mathrm{~T}^{-1}$ Arrhenius plot for PBVT.
*The higher the value of Adj. R-Square, the better linearity.

Figure S13 ESR signals of DMPO- $\cdot \mathrm{OH}$ and $\mathrm{O}_{2} \cdot \cdot$ of BVT, 02PBVT, 05PBVT and 2PBVT under under PC (photocatalytic, see the irradiation graph in Figure S2) and PTC (photothermocatalytic, see the irradiation graph in Figure S3) condition.

Figure S14 O_{2}-TPD profile of BVT with the process of oxygen adsorption under (A) $80^{\circ} \mathrm{C}$, (B) UV-vis irradiation (irradiation spectra in Figure S2) at ambient temperature,
(C) simulated solar irradiation (irradiation spectra in Figure S3) at $80^{\circ} \mathrm{C}$ and the merge image of (A), (B) and (C).

