## **Supporting Information**

# Facile and Benign Conversion of Sucrose to Fructose Using Zeolites With Balanced Brønsted and Lewis Acidity

Shunmugavel Saravanamurugan,<sup>a,b</sup> Irene Tosi,<sup>a</sup> Kristoffer H. Rasmussen,<sup>a,1</sup> Rasmus E. Jensen,<sup>a,1</sup> Esben Taarning,<sup>c</sup> Sebastian Meier,<sup>a\*</sup> and Anders Riisager<sup>a\*</sup>

<sup>a</sup>Dr. S. Saravanamurugan, I. Tosi, K.H. Rasmussen, R.E. Jensen, Dr. S. Meier, Prof. A. Riisager, Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800-Kgs. Lyngby, Denmark.

<sup>b</sup>Dr. S. Saravanamurugan, Center of Innovative and Applied Bioprocessing (CIAB), Mohali 160 071, Punjab, India.

<sup>c</sup>Dr. E. Taarning, Haldor Topsøe A/S, Haldor Topsøes Allé 1, 2800-Kgs. Lyngby, Denmark.

\*e-mail: <u>semei@kemi.dtu.dk</u> or <u>ar@kemi.dtu.dk</u>

### **Catalyst characterization**

## X-Ray Powder Diffraction (XRPD)

H-USY (6) and (30), H-Beta (12.5) and Sn-DeAl-Beta zeolites were analyzed by powder X-ray diffraction using a Huber G670 imaging-plate Guinier powder diffraction camera using CuK $\alpha$  radiation at a wavelength of 0.15406. The X-ray diffractograms of the samples were recorded in the 2 $\theta$  range of 3 to 80° at a rate of 1.5 °/min and the results are shown in Figures S1 and S2 below.



Figure S1. The powder XRD patterns of H-Beta (12.5) and modified H-Beta zeolites.



Figure S2. The powder XRD patterns of USY zeolites.

### Ammonia-Temperature Programmed Desorption (NH<sub>3</sub>-TPD)

The weak/medium/strong acid sites present in Beta, modified Beta and USY zeolites were measured by NH<sub>3</sub>-TPD using an AutoChem II 2920 Chemisorption Analyzer from Micromeritics. About 100 mg sample was placed in U-tubes made up of quartz and treated at 500 °C for 1 h under helium (99.999%, AGA) with a flow rate of 50 mL/min, then cooled down to 100 °C. Ammonia (1% in He, AGA) with a flow rate of 50 mL/min was then passed through to the sample holder for 2 h. In order to remove any physisorbed ammonia, the samples were flushed with He (50 mL/min) prior to the measurement. Ammonia desorption was carried out and measured every second from 100 to 500 °C at a ramp of 10 °C/min, and the number of available acid sites was calculated based on the area under the desorption curve. The amounts of weak/medium (acid type 1) (desorption approx. between 100-270 °C) and strong acid sites (acid type 2) (desorption approx. between 270-500 °C) were calculated from the desorption area under the curve (Figure S3).



Figure S3. NH<sub>3</sub>-TPD profiles of Beta and USY zeolites

### Nitrogen-sorption measurement

Brunauer-Emmet-Teller (BET) surface area and pore volume were analyzed by nitrogen adsorption and desorption measurements using a Micromeritics ASAP 2020 Surface Area and Porosity Analyzer system at liquid nitrogen temperature. The sample was degassed at 300 °C overnight prior to the measurement, except for the acid-dealuminated Beta zeolite (DeAI-Beta) that was degassed at 90 °C.

Physicochemical properties of the zeolites described herein are compiled in Table S1 below.

| Catalyst                  | Acid sites type<br>1 (100-270 °C)<br>(µmol/g) | Acid sites type<br>2 (270-500 °C)<br>(μmol/g) | Total acid<br>sites<br>(µmol/g) | BET<br>area<br>(m²/g) | Pore<br>volume<br>(cm <sup>3</sup> /g) | Si/Al <sup>1</sup> |
|---------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------|-----------------------|----------------------------------------|--------------------|
| H-USY (6)                 | 488                                           | 539                                           | 1027                            | 708                   | 0.2436                                 | 6.5                |
| H-USY(30)                 | 140                                           | 226                                           | 366                             | 792                   | 0.2504                                 | 29.7               |
| H-Beta(12.5)              | 693                                           | 395                                           | 1088                            | 579                   | 0.1631                                 | 12.5               |
| DeAl-Beta <sup>2</sup>    | 28                                            | 91                                            | 119                             | 526                   | 0.1492                                 | 145                |
| Sn-DeAl-Beta <sup>3</sup> | 196                                           | 95                                            | 291                             | 506                   | 0.1767                                 | 144 <sup>4</sup>   |
| Amberlyst-365             | -                                             | -                                             | >5400                           | 33                    | 0.2                                    |                    |

Table S1. Physicochemical properties and composition of USY and Beta zeolites

<sup>1</sup>Determined using Panalytical Epsilon-3 X-ray Fluorescence Spectrometer.

<sup>2</sup>Nitric acid dealuminated H-Beta(12.5).

<sup>3</sup>Nitric acid dealuminated H-Beta(12.5) and washed with distilled water.

<sup>4</sup>Si/Sn ratio of 15.6.

<sup>5</sup>from Sigma-Aldrich



#### Catalyst reuse sequence

Figure S4. Catalyst reusability for H-USY (6). Reusability was assessed at elevated temperature (120 °C) relative to optimized conditions.

#### **SEM** pictures of catalysts



Figure S5. Scanning Electron Microscope images recorded on a FEI Quanta 200 ESEM FEG instrument of a) H-USY (6), b) Sn-DeAl-Beta (12.5), c) H-Beta (12.5), d) DeAl-Beta (Nitric acid dealuminated) and e) DeAl-Beta (steamed).

#### **Conversion to rare functional tautomers**



Figure S6. <sup>1</sup>H-<sup>13</sup>C HSQC NMR spectra of a reaction mixture obtained by subjecting galactose to Sn-DeAl-Beta catalysed reaction at 100 °C (4 g methanol, 75 mg of catalyst and 125 mg galactose) for 2 hours. The reaction yields 61% methyl-tagatoside, 2% tagatose, 5% galactose and 23% methyl-galactoside. Reference spectra for methyl-tagatoside (middle and grey outline in the left panel), galactose and methyl-galactoside are shown.