Electronic supplementary information

Effect of Ni doping in $Ni_xMn_{1-x}Ti_{10}$ (x = 0.1-0.5) on activity and SO₂ resistance for NH₃-SCR of NO studied with in situ DRIFTS

samples	Mass fraction of elemental (wt %)		
	Ni	Mn	Ti
MnTi ₁₀	-	6.15	54.11
$Ni_{0.1}Mn_{0.9}Ti_{10}$	0.68	5.61	54.17
$Ni_{0.2}Mn_{0.8}Ti_{10}$	1.30	5.02	54.20
$Ni_{0.3}Mn_{0.7}Ti_{10}$	2.01	4.40	54.31
$Ni_{0.4}Mn_{0.6}Ti_{10}$	2.71	3.78	54.41
Ni _{0.5} Mn _{0.5} Ti ₁₀	3.40	3.05	54.50

Table S1. The quantitative results of mass fraction of various catalysts by ICP

Fig. S1 NH₃-SCR performance of $Ni_{0.4}Mn_{0.6}Ti_{10}$ catalysts under different gas hourly space velocities (A) NO_x conversion and (B) N_2 selectivity. Reaction conditions: $[NO] = [NH_3] = 1000$ ppm, $[O_2] = 3$ vol. % and N_2 as balance gas.

Fig. S2 Effect of H₂O on NO_x conversion over Ni_{0.4}Mn_{0.6}Ti₁₀ catalyst

Fig. S3 Effect of SO₂ on NO_x conversion over the Ni_{0.4}Mn_{0.6}Ti₁₀ catalyst

Fig. S4 Effects of H₂O and SO₂ on NO_x conversion over the Ni_{0.4}Mn_{0.6}Ti₁₀ catalyst at 200 °C

Fig. S5 Stability test result of $Ni_{0.4}Mn_{0.6}Ti_{10}$ catalyst. Reaction conditions: $[NO] = [NH_3] = 1000$ ppm, $[O_2] = 3$ vol. %, N₂ as balance gas and GHSV: 40,000 h⁻¹.

Fig. S6 Plots of surface O_{α} amount based on XPS (%) versus NO₂ amount in NO oxidation.

Fig. S7 In situ DRIFTS on the Ni_{0.4}Mn_{0.6}Ti₁₀ catalyst at 240 °C for different time:

(A) NO adsorption, (B) NH_3 adsorption, (B) $SO_2 + O_2$ adsorption.

Fig. S8 In situ DRIFTS of the SO₂ + NO + O₂ reaction on the Ni_{0.4}Mn_{0.6}Ti₁₀ catalyst at 240 °C.

Fig. S9 *In situ* DRIFTS of the reaction on the $Ni_{0.4}Mn_{0.6}Ti_{10}$ catalyst at 240 °C, during which the $NH_3 + O_2 + NO$ were let in firstly, secondly $NH_3 + O_2 + NO + SO_2$.