Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Hydrogenative Ring-Rearrangement of Biomass Derived 5-(Hydroxymethyl)furfural to 3-(Hydroxymethyl)cyclopentanol Using Combination Catalyst Systems of Pt/SiO₂ and Lanthanoid Oxides

J. Ohyama,^{a,b*} Y. Ohira^a and A. Satsuma ^{a,b*}

 ^a Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
 ^b Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University.

Entry	Catalyst	(1R,3R) or (1S,3S)	(1R, 3S) or (1S, 3R)		
1	Pt/SiO ₂ +Nd ₂ O ₃	31	57		
2	Pt/SiO ₂ +La ₂ O ₃	28	54		
3	Pt/SiO ₂ +CeO ₂	26	48		
4	Pt/SiO ₂ +Dy ₂ O ₃	20	36		
5	Pt/SiO ₂ +Yb ₂ O ₃	27	52		
6	Pt/SiO ₂ +Ta ₂ O ₅	0	4		
7	Pt/SiO ₂ +Al ₂ O ₃	15	36		
8	Pt/SiO ₂	3	6		
9	Pt/SiO ₂ +TiO ₂	14	29		
10	Pt/SiO ₂ +ZrO ₂	4	8		
11	Pt/SiO ₂ +Nb ₂ O ₅	12	27		
12	Pt/SiO ₂ +SAH	10	21		
13	Pt/SiO ₂ +HT	6	14		
14	Pt/SiO ₂ +MgO	2	5		
15	Pt/La ₂ O ₃	0	0		
16	Pt/SiO ₂ +H ₃ PO ₄ ^d	0	1		

 Table S1. Composition of diastereomers of 3-(hydroxymethyl)cyclopentanol (HCPO) for Table 1.

Table S2. Composition of diastereomers of 3-(hydroxymethyl)cyclopentanol (HCPO) for Table 2.

Entry	Catalyst	(1R,3R) or (1S,3S)	(1R, 3S) or (1S, 3R)
1	Pt/SiO ₂	10	26
2	Pt/SiO ₂ +Ta ₂ O ₅	5	11
3	Pt/SiO ₂ +Al ₂ O ₃	18	34
4	Pt/SiO ₂ +Nb ₂ O ₅	23	42
5	Pt/SiO ₂ +SAH	13	27
6	Pt/SiO ₂ +MgO	5	13

(1R,3R) or (1S,3S)-3-(hydroxymethyl)cyclopentanol

¹H NMR (CD₃OD/CDCl₃ 2:1, 500MHz)

δ in ppm: 4.23 (m, 1H), 2.26 (m, 1H), 1.83 (m, 2H), 1.69 (m, 1H), 1.53 (m, 1H), 1.41 (m, 1H), 1.26 (m, 1H).

GC-MS: $m/z = 116 [M]^+$

¹H NMR chart of (1R,3R) or (1S,3S)-3-(hydroxymethyl)cyclopentanol

(1R,3S) or (1S,3R)-3-(hydroxymethyl)cyclopentanol

¹H NMR (CD₃OD, 500MHz)

δ in ppm: 4.29 (m, 1H), 3.61 (m, 1H), 2.71 (br, 2H), 2.29 (m, 1H), 2.02 (m, 1H), 1.80 (m, 2H), 1.68 (m, 3H) , 1.50 (m, 1H). GC-MS: m/z = 116 [M]⁺

¹H NMR chart of (1R,3S) or (1S,3R)-3-(hydroxymethyl)cyclopentanol

Metal oxide	Wavenumber (cm ⁻¹)
MgO	1588
La_2O_3	1592
Nd_2O_3	1597
CeO ₂	1598
Dy_2O_3	1602
HT	1602
Yb ₂ O ₃	1603
ZrO ₂	1604
TiO ₂	1604
Nb ₂ O ₅	1604
Ta_2O_5	1607
Al ₂ O ₃	1614
SAH	1619

Table S3. Peak wavenumber of FT-IR band due to v_{8a} mode of pyridine adsorbed on MOx.

The HMF hydrogenation was conducted using $Pt/SiO_2 + 50$ mg of Nd_2O_3 (five times amount of the catalyst in Table 1). As presented in Table 4 (entry 1), 90% yield of HCPO was obtained under the same reaction conditions as Table 1. In other words, the amount of Nd_2O_3 did not affect the yield of the ring-rearranged product. The result suggests that the Lewis acid amount of Nd_2O_3 has little effect on the ring-rearrangement.

The ring-rearrangement of BHF to HHCPEN was conducted using Nd_2O_3 as shown in Table S4 (entry 2 and 3). The ring-rearrangement reaction was improved by Nd_2O_3 in comparison with the reaction without solid catalysts, although the yield of HHCPEN was low. The low yield of HHCPEN might be due to the undesired degradation of BHF, because BHF is relatively easily polymerized.

Table S4. Product yields for HMF hydrogenation on 10 mg Pt/SiO₂ + 50 mg Nd₂O₃ (entry 1), and those for BHF hydrogenation on 10 mg Nd₂O₃ (entry 2) and without catalyst (entry 3).

Entry	try Catalyst -	Product yield $(\%)^h$							
		HCPO ^b	HCPN	HHCPEN	BHF	BHTHF	HHD	HDN	1,2,6-HT
1	10 mg Pt/SiO ₂ + 50 mg Nd ₂ O ₃	90	0	0	0	0	0	0	0
2	10 mg Nd ₂ O ₃	0	0	35	0	0	0	0	0
3	-	0	0	28	0	0	0	0	0

^{*a*} Reaction conditions: 0.067 M HMF or BHF aq. 3 mL; H₂ 3 MPa, 140°C, 30 h. ^{*b*} Reaction conditions: 0.067 M BHF aq. 3 mL; H₂ 3 MPa, 140°C, 6 h.