One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia

Enhui Yuan¹, Guangjun Wu¹, Weili Dai¹, Naijia Guan^{1,2}, Landong Li^{1,2*}

¹ School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China ² Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China

* Corresponding author

E-mail: lild@nankai.edu.cn

Figure S1 Apparent color of Fe/ZSM-5-DS samples with different Fe loadings and 2.9%Fe/ZSM-5-WI

Figure S2 FTIR spectra of EDTA-FeNa and as-synthesized Fe/ZSM-5-DS samples

Figure S3 XRD patterns of H-ZSM-5 and Fe/ZSM-5-DS with different Fe loadings

Figure S4 Low temperature nitrogen adsorption-desorption isotherms of H-ZSM-5 and Fe/ZSM-5 samples

Figure S5 NOx conversion as a function of reaction temperature over various catalysts. Reaction conditions: NO =1000 ppm; NH₃ =1000 ppm; O₂ =10%; catalyst =0.4 g; GHSV =30,000 /h; SE: solid-state ion-exchange, LE: liquid-phase ion-exchange.

Figure S6 UV-vis-NIR spectra of hydrated 2.5%Fe/ZSM-5-DS catalyst before and after NH₃-SCR reaction at 623 K for 40 h. Reaction conditions: NO =1000 ppm; NH₃ =1000 ppm; O₂ =10%; SO₂ = 50 ppm; H₂O = 3%; catalyst =0.4 g; GHSV =30,000 /h