Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Reduction of Carbon Dioxide and Organic Carbonyls by Hydrosilanes Catalyzed by the Perrhenate Anion

Danny S. Morris,^a Catherine Weetman,^a Julian T. C. Wennmacher,^b Mirza Cokoja,^b Markus Drees,^b Fritz E. Kühn,^b and Jason B. Love ^{a*}.

^aEaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.

^bCatalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraβe 4, 85747 Garching bei München, Germany.

Contents

1.	General Procedures	
2.	Synthesis of [N(hexyl) ₄][ReO ₄]	
3.	General Procedure for catalytic reactions of silanes with CO ₂	4
4.	General Procedure for catalytic <i>N</i> -methylation of amines with CO ₂	4
5.	General Procedure for catalytic reactions of aldehydes and ketones	4
6.	Mechanistic Reactions	4
7.	DFT calculations	5
a.	Solvent calculations	5
b.	CO ₂ cycloaddition as alternative pathway	6
c.	Optimised structures (gas-phase) from Scheme 2	7
8.	NMR spectra	
8	8.1 Hydrosilylation of CO ₂ NMRs	
8	8.2 N-Methylation NMRs	
8	8.3 Hydrosilylation of Aldehydes NMRs	
8	8.4 Hydrosilylation of Ketones NMRs	40
9.	GC-MS data	45
ç	9.1 Hydrosilylation of CO ₂	45
ç	9.2 Hydrosilylation of aldehydes	45
ç	9.3 Hydrosilylation of ketones	

1. General Procedures

NMR spectra were recorded on a Bruker AVA400 spectrometer for ¹H (399.90 MHz); a Bruker AVA500 spectrometer ¹H (500.12 MHz), ¹³C (125.76 MHz); a Bruker PRO500 spectrometer ¹H (500.23 MHz) or a Bruker AVA600 spectrometer ¹H (599.81 MHz). Mass spectrometry data was collected on a Bruker 12 T SolariX ESI spectrometer. All FT-IR spectra were recorded using JASCO 410 or JASCO 460 plus spectrometers.

All chemicals were purchased from Sigma-Aldrich and used as supplied without further purification. Deuterated solvents were purchased from Cambridge Isotopes. CO₂ was supplied by BOC gases UK, labelled ¹³CO₂ from Cambridge Isotopes. Elemental analysis was performed by Mr. Stephen Boyer at the London Metropolitan University, measured in duplicate.

2. Synthesis of [N(hexyl)₄][ReO₄]

Figure S1. ORTEP representation of $[N(\text{Hexyl})_4][\text{ReO}_4]$ with displacement ellipsoids drawn at 50%, disordered atoms and hydrogen atoms are removed for clarity. Selected bond lengths (Å) and angles (°): Re-O(1)/(4) 1.741(10), Re-O(2) 1.450 (19), Re-O(3) 1.854 (17), O(1)-Re(1)-O(2) 78.0(9), O(2)-Re(1)-O(3) 102.0(9), O(3)-Re(1)-O(4) 153.5(12). Symmetry transformations used to generate equivalent atoms: ¹+X,1-Y,+Z; ²-X,+Y,1-Z; ³-X,1-Y,1-Z; ⁴1-X,1-Y,1-Z; ⁵1-X,+Y,1-Z.

An aqueous solution of ammonium perrhenate (1.26 g, 4.7 mmol) was added to a chloroform solution of tetrahexylammonium bromide (2.00 g, 4.6 mmol) and stirred together for 6 hours at room temperature at which point the two layers were separated, the aqueous layer was extracted with chloroform $(2 \times 10 \text{ mL})$. The combined chloroform extracts were dried over magnesium sulphate and the solvent removed under reduced pressure to provide a colourless solid of tetrahexylammonium perrhenate (2.10 g, 75 % yield).

¹H NMR (500 MHz; d₃-MeCN, 300 K): $\delta_{\rm H}$ (ppm) 3.07 (m, 8H, NCH₂), 1.60 (m, 8H, CH₂), 1.33 (m, 24H, CH₂), 0.91 (t, 12H, CH₃).

¹³C{¹H} NMR (500 MHz; d₃-MeCN, 300 K): δ_{C} (ppm) 59.48 (NCH₂), 31.84 (CH₂), 26.57 (CH₂), 26.57 (CH₂), 23.10 (CH₂), 22.34 (CH₂), 14.21 (CH₃).

FTIR (ATR): v_{max}/cm^{-1} 902 (Re-O).

ESI mass spectrometry: M^+ m/z found (calculated): 354.41068 (354.40943 $C_{24}H_{52}N_2$), 959.77918 (959.75512 ($C_{24}H_{54}N$)₂ReO₄), 1565.16124 (1565.10132 ($C_{24}H_{54}N$)₃(ReO₄)₂). M^- m/z found (calculated): 250.93270 (250.93597 ReO₄), 854.26749 (854.27860 ($C_{24}H_{52}N$)(ReO₄)₂), 1459.59185 (1459.62427 ($C_{24}H_{52}N$)₂(ReO₄)₃) 2064.90770 (2064.97026 ($C_{24}H_{52}N$)₃(ReO₄)₄).

Elemental analysis for C₂₄H₅₂NO₄Re found (calc.); C: 47.55 % (47.65), H: 8.72 % (8.67), N: 2.38 % (2.32).

3. General Procedure for catalytic reactions of silanes with CO2

 $[N(hexyl)_4][ReO_4]$ (3 mg, 2.5 mol %) in 0.6 mL d-solvent, silane (0.2 mmol) and trimethylphenylsilane (2 µL) as an internal standard (unless otherwise stated) were added to a Teflon tapped NMR tube. The solution was freeze-pump-thaw degassed three times before being refilled with 1 bar of CO₂. The ¹H NMR spectrum was recorded and then the tube was placed in a preheated oil bath (80 °C). The reactions were monitored by ¹H NMR spectroscopy regularly until the silane was consumed. At this point the reaction was quenched with water (10 µL, 0.56 mmol), heated for 2 h and the ¹H NMR spectrum recorded.

4. General Procedure for catalytic N-methylation of amines with CO₂

 $[N(hexyl)_4][ReO_4]$ (3 mg, 2.5 mol %) in 0.6 mL d-solvent, amine (0.2 mmol), silane (0.8 mmol) and trimethylphenylsilane (2 µL) as an internal standard (unless otherwise stated) were added to a Teflon tapped NMR tube. The solution was freeze-pump-thaw degassed three times before being refilled with 2 bar of CO₂. The ¹H NMR spectrum was recorded and then the tube was placed in a preheated oil bath (80 °C) for 2 hours.

5. General Procedure for catalytic reactions of aldehydes and ketones

 $[N(hexyl)_4][ReO_4]$ (3 mg, 2.5 mol %) in 0.5 mL CD₃CN, phenylsilane (0.24 mmol), carbonyl (0.2 mmol) and trimethylphenylsilane (2 µL) as an internal standard were added to a NMR tube. The ¹H NMR spectrum was recorded and then the tube was placed in a preheated oil bath (80 °C). The reactions were monitored by ¹H NMR spectroscopy regularly until the silane or carbonyl was consumed. At this point the reaction was quenched with water (10 µL, 0.56 mmol), heated for 15 minutes and the ¹H NMR spectrum recorded.

6. Mechanistic Reactions

NMR reaction to rule out carbonate formation

 $[N(hexyl)_4][ReO_4]$ (20 mg, 0.033 mmol) in 0.5 mL C₆D₆ was added to a Youngs tap NMR tube in a nitrogen filled glove box. The solution was freeze-pump-thaw degassed three times before being refilled with 1 bar of ¹³CO₂. The ¹H and ¹³C NMR spectrum was recorded and monitored over time and with subsequent heating, no observed signs of reactivity by ¹H and ¹³C NMR spectroscopy (Figure S20).

Stoichiometric reactions with varying equivalents of diphenylsilane

1 eq Ph₂SiH₂: [N(hexyl)₄][ReO₄] (32 mg, 0.054 mmol) in 0.5 mL of C_6D_6 , diphenylsilane (10 µL, 0.054 mmol) were added to a NMR tube. ¹H and ²⁹Si NMR spectra was recorded after addition and then the reaction mixture was heated for 16 hr 80 °C (Figure S22 & Figure S23).

10 eq Ph₂SiH₂: [N(hexyl)₄][ReO₄] (16 mg, 0.026 mmol) in 0.5 mL of C_6D_6 , diphenylsilane (50 µL, 0.26 mmol) were added to a NMR tube. ¹H NMR spectra was recorded after addition and then the reaction mixture was heated for 18 hr 80 °C (Figure S25).

7. DFT calculations

a. Solvent calculations

In addition to the gas-phase, SMD optimisations and frequency calculations for benzene and DMF have been performed.

Here are the free energy profiles for both solvents similar to Scheme 2 in the manuscript.

Scheme S1. Free energy profile in benzene

Scheme S2. Free energy profile in DMF

b. CO₂ cycloaddition as alternative pathway

The following scheme shows additional modes of CO_2 activation with higher barriers than that presented in the manuscript Scheme 2 / Figure 1.

Scheme S3. Cycloaddition modes of CO₂ to the catalyst/substrate complex

The calculated free energies are summarized in Table S1.

3+2	∆G gas-phase	∆G benzene	∆G DMF	direct	∆G gas-phase	∆G benzene	∆G DMF	2+2	∆G gas-phase	∆G benzene	∆G DMF
Α	13.9	18.2	18.2	В	1.8	7.4	7.6	С	2.9	8.4	10.6
TS1	36.1	42.7		TS2	30.0	37.4	40.1	TS3	20.1	27.8	31.2
D	-1.3	6.1	9.0	D	-1.3	6.1	9.0	E	-8.2	-0.9	1.9
TS4	6.3	13.9	19.1	TS4	6.3	13.9	19.1				
E	-8.2	-0.9	1.9	E	-8.2	-0.9	1.9				

Table S1. Free Energies of the alternative CO₂ cycloadditions (gas-phase, benzene, DMF)

c. Optimised structures (gas-phase) from Scheme 2

Note: Structures of the solvent calculations can be requested

a) Starting material

ReO₄-

Center	r Atomio	c Atomio	c Co	ordinates (A	ngstroms)
Number	r Number	r Type	Х	Y	Z
1	75	0	0.000038	0.000040	-0.000089
2	8	0	-0.714491	-0.151889	1.598142
3	8	0	-1.268813	-0.050472	-1.214756
4	8	0	0.860831	1.527858	-0.114161
5	8	0	1.122122	-1.325872	-0.268390
HF = -3	379.5150788				
Sum of	electronic	and thermal	Enthalpies=	-379	.497219
Sum of	electronic	and thermal	Free Energies=	-379	.533196

PhSiH₃

Center	Atomic	Atomic	Co	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	14	0	-2.343937	0.000017	0.005621
2	1	0	-2.851264	-1.210737	-0.690236
3	1	0	-2.850528	1.219605	-0.675142
4	1	0	-2.870794	-0.008773	1.396627
5	6	0	-0.466162	0.000065	-0.012467
6	6	0	0.255226	-1.203197	-0.009676
7	6	0	0.255277	1.203218	-0.009700
8	6	0	1.648206	-1.205540	0.003254
9	1	0	-0.273189	-2.151097	-0.022068
10	6	0	1.648328	1.205462	0.003270
11	1	0	-0.273089	2.151129	-0.022061
12	6	0	2.347057	-0.000036	0.010245
13	1	0	2.187624	-2.145893	0.003684
14	1	0	2.187762	2.145804	0.003697
15	1	0	3.430997	-0.000108	0.017240

HF = -523.0569036Sum of electronic and thermal Enthalpies=-522.933938Sum of electronic and thermal Free Energies=-522.974149

Center	Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	8	0	0.00000	0.00000	1.160730
3	8	0	0.00000	0.000000	-1.160730

b) Pathway "Direct Addition of CO₂ to SiH"

TS "Forming of a PhSiH₃-ReO₄⁻ complex"

Center	Atomic	Atomic	Coor	dinates (Angs	nates (Angstroms)		
Number	Number	Туре	Х	Y	Z		
1	6	0	5.843811	-0.592053	0.000886		
2	6	0	6.001970	0.791926	0.000574		
3	6	0	4.874210	1.613386	-0.000255		
4	6	0	3.599975	1.050591	-0.000765		
5	6	0	3.416768	-0.342118	-0.000453		
6	6	0	4.563590	-1.147849	0.000365		
7	14	0	1.656612	-1.060433	-0.000769		
8	8	0	-1.263964	-1.482441	-0.000475		
9	75	0	-2.084478	0.077142	0.000093		
10	8	0	-3.085202	0.221391	-1.433453		
11	8	0	-0.861841	1.339172	-0.000242		
12	8	0	-3.083975	0.220986	1.434535		
13	1	0	1.816724	-2.539716	-0.001869		
14	1	0	0.998337	-0.595109	-1.235950		
15	1	0	0.998720	-0.597039	1.235359		
16	1	0	2.731053	1.702293	-0.001371		
17	1	0	4.456434	-2.228401	0.000598		
18	1	0	4.988846	2.692428	-0.000493		
19	1	0	6.715768	-1.238408	0.001525		
20	1	0	6.995318	1.228240	0.000977		
HF = -90	2.5834017	/ NImag=1 (·	-28.5655 cm-1)				
Sum of e	lectronic	and thermal	Enthalpies=	-902.	441610		
Sum of e	lectronic	and thermal	Free Energies=	-902.	499892		

Center	Atomic		Atomic	Coor	dinates (Angs	stroms)
Number	Number		Туре	Х	Y	Z
1	6		0	-5.704687	-1.214996	-0.196790
2	6		0	-6.407842	-0.017399	-0.320504
3	6		0	-5.724618	1.192572	-0.211244
4	6		0	-4.349574	1.199020	0.022293
5	6		0	-3.620079	0.008294	0.157601
6	6		0	-4.330226	-1.196073	0.036391
7	14		0	-1.743753	0.023148	0.533167
8	8		0	0.823078	0.043843	1.035207
9	75		0	2.216800	-0.001683	-0.050325
10	8		0	3.179195	1.447630	0.165425
11	8		0	1.641942	-0.085440	-1.703757
12	8		0	3.194071	-1.413115	0.305058
13	1		0	-1.648246	-0.060965	2.009711
14	1		0	-1.270940	1.317213	-0.003540
15	1		0	-1.216629	-1.178366	-0.147662
16	1		0	-3.832345	2.151385	0.095539
17	1		0	-3.798050	-2.139401	0.120612
18	1		0	-6.261886	2.130119	-0.313451
19	1		0	-6.226613	-2.162326	-0.287671
20	1		0	-7.476846	-0.027379	-0.505432
HF = -2	902.5836998					
Sum of	electronic	and	thermal	Enthalpies=	-902.	441064
Sum of	electronic	and	thermal	Free Energies=	-902.	504497

TS CO₂ attack on Si-H

Center	Atomic	Atomic	Coord	ordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-2.932794	1.213564	-0.546320	
2	6	0	-1.813346	0.813743	0.199856	
3	6	0	-1.023048	1.793708	0.822064	
4	6	0	-1.331319	3.145301	0.692192	
5	6	0	-2.439322	3.533837	-0.059742	
6	6	0	-3.236795	2.568533	-0.671710	
7	14	0	-1.355406	-0.990987	0.351885	
8	8	0	0.391250	-0.964038	0.313554	
9	75	0	2.036613	-0.251193	-0.067598	
10	8	0	2.025202	0.564312	-1.590668	
11	8	0	-4.393264	-1.439793	-1.014692	
12	6	0	-4.527511	-1.896038	0.148122	
13	8	0	-5.152009	-2.878853	0.573690	
14	8	0	3.210581	-1.521411	-0.121531	
1.5	8	0	2.487318	0.878480	1,165306	

1	0	-1.591095	-1.591362	1.679096
1	0	-1.720005	-1.846793	-0.782138
1	0	-3.566415	0.447176	-0.993386
1	0	-0.158112	1.514171	1.415144
1	0	-4.104660	2.868206	-1.249353
1	0	-0.707557	3.890179	1.174124
1	0	-2.680215	4.586658	-0.164917
1	0	-3.970010	-1.300381	0.952843
2252186				
tronic and	thermal	Enthalpies=	-1091.	065018
tronic and	thermal	Free Energies=	-1091.	133960
	1 1 1 1 1 1 2252186 cronic and cronic and	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2252186 cronic and thermal tronic and thermal	1 0 -1.591095 1 0 -1.720005 1 0 -3.566415 1 0 -0.158112 1 0 -4.104660 1 0 -0.707557 1 0 -2.680215 1 0 -3.970010 2252186 Eronic and thermal Enthalpies= tronic and thermal Free Energies=	1 0 -1.591095 -1.591362 1 0 -1.720005 -1.846793 1 0 -3.566415 0.447176 1 0 -0.158112 1.514171 1 0 -4.104660 2.868206 1 0 -0.707557 3.890179 1 0 -2.680215 4.586658 1 0 -3.970010 -1.300381 2252186 -1091. -1091. -1091.

PhSiH₃-O-ReO₃ complex plus HCO₂-

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	6	0	-3.125570	1.128334	-0.447256		
2	6	0	-1.930672	0.796553	0.212215		
3	6	0	-1.152425	1.835982	0.745932		
4	6	0	-1.546702	3.166268	0.618933		
5	6	0	-2.727580	3.481774	-0.049874		
6	6	0	-3.513472	2.460409	-0.580603		
7	14	0	-1.378647	-0.999117	0.372109		
8	8	0	0.406569	-0.696670	0.524773		
9	75	0	2.043478	-0.181435	-0.077039		
10	8	0	3.245761	-1.305914	0.469486		
11	8	0	-4.918968	-1.573802	-0.729703		
12	6	0	-4.141774	-2.178846	0.005220		
13	8	0	-4.059075	-3.280457	0.529055		
14	8	0	2.416297	1.395706	0.543734		
15	8	0	2.064052	-0.127642	-1.808085		
16	1	0	-1.493070	-1.693966	1.669283		
17	1	0	-1.300223	-1.802841	-0.864373		
18	1	0	-3.767636	0.345984	-0.840235		
19	1	0	-0.226273	1.615188	1.261989		
20	1	0	-4.438170	2.696820	-1.096127		
21	1	0	-0.927069	3.952436	1.036624		
22	1	0	-3.033732	4.517471	-0.155144		
23	1	0	-3.181562	-1.468438	0.294911		
HF = -1	1091.228326						
Sum of	electronic	and thermal	Enthalpies=	-1091.	068495		
Sum of	electronic	and thermal	Free Energies=	-1091.	137147		

Cent	er	Atomic	Atomic	Coor	dinates (Ang	stroms)
Numb	er	Number	Туре	Х	Y	Z
	1	6	0	1.708543	3.506672	-0.115536
	2	6	0	2.302534	2.820350	0.943827
	3	6	0	2.355490	1.429372	0.938296
	4	6	0	1.799802	0.695578	-0.116877
	5	6	0	1.208750	1.399249	-1.175308
	6	6	0	1.166194	2.792645	-1.180522
	7	14	0	1.647878	-1.181218	-0.117661
	8	8	0	3.663942	-2.599028	-0.707471
	9	6	0	4.417366	-1.924468	0.030668
	10	8	0	4.072460	-0.886608	0.643501
	11	8	0	-0.221633	-1.135715	0.118091
	12	75	0	-1.796961	-0.248821	0.066098
	13	8	0	-2.082713	0.366759	-1.534399
	14	8	0	-1.793847	1.073699	1.189819
	15	8	0	-3.078904	-1.344724	0.489066
	16	1	0	1.507916	-1.683323	-1.492496
	17	1	0	1.793806	-1.995129	1.090265
	18	1	0	2.851903	0.901361	1.741883
	19	1	0	0.759887	0.858182	-2.002134
	20	1	0	2.729777	3.372388	1.774714
	21	1	0	0.697897	3.314839	-2.007884
	22	1	0	1.667677	4.590922	-0.108631
	23	1	0	5.466404	-2.272083	0.158017
HF =	-1091.	241079 /	NImag = 1 (-232)	.1622 cm ⁻¹)		

Sum of electronic and thermal Enthalpies= Sum of electronic and thermal Free Energies= -1091.080118 -1091.146416

Complex HCO₂-PhSiH₃-O-ReO₃

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.460297	2.309552	0.786414	
2	6	0	3.111797	0.962535	0.691917	
3	6	0	2.064392	0.547251	-0.143236	
4	6	0	1.379981	1.524055	-0.881892	
5	6	0	1.732007	2.869008	-0.795134	
6	6	0	2.774324	3.266450	0.040716	
7	14	0	1.568186	-1.264700	-0.280333	
8	8	0	-0.344724	-0.693777	0.325509	
9	75	0	-2.013180	-0.108656	0.077643	
10	8	0	-2.688928	0.414465	1.597871	

	11	8		0		3.151498	-1.9473	16	-0.909923
	12	6		0		4.221014	-2.2347	19	-0.220136
	13	8		0		4.434831	-1.9987	57	0.954577
	14	8		0		-2.995953	-1.3896	24	-0.582811
	15	8		0		-1.993395	1.2276	45	-1.045041
	16	1		0		0.880122	-1.6619	87	-1.522114
	17	1		0		1.510317	-2.1006	28	0.931102
	18	1		0		3.658223	0.2259	67	1.269188
	19	1		0		0.546442	1.2446	47	-1.514990
	20	1		0		4.269008	2.6108	08	1.444656
	21	1		0		1.180761	3.6053	34	-1.370072
	22	1		0		3.044824	4.3147	95	0.115498
	23	1		0		4.974678	-2.7497	86	-0.845177
HF=	-10	91.2736863							
Sum	of	electronic	and	thermal	Entha	alpies=	-10	91.11	.0950
Sum	of	electronic	and	thermal	Free	Energies=	-10	91.17	7976

c) Pathway "2+2 addition"

TS 2+2 addition of silane to perrhenate

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)						
Number	Number	Туре	Х	Y	Z					
1	14	0	0.954088	-1.236667	-0.427345					
2	1	0	1.400849	-2.510208	0.287672					
3	6	0	2.657043	-0.359176	-0.121156					
4	6	0	2.887458	1.009771	-0.337555					
5	6	0	3.754133	-1.138715	0.268542					
6	6	0	4.156418	1.566971	-0.183406					
7	1	0	2.050850	1.636139	-0.621173					
8	6	0	5.029360	-0.593126	0.422687					
9	1	0	3.599260	-2.197130	0.460754					
10	6	0	5.234684	0.766483	0.195213					
11	1	0	4.305580	2.628814	-0.355729					
12	1	0	5.859051	-1.224627	0.726804					
13	1	0	6.222485	1.199615	0.318064					
14	8	0	0.120400	0.384827	-0.431514					
15	75	0	-1.672406	0.086390	0.055604					
16	8	0	-2.255012	1.723697	-0.036649					
17	8	0	-1.952712	-0.413961	1.700694					
18	8	0	-2.667066	-0.808348	-1.060577					
19	1	0	-0.547765	-1.679222	0.022090					
20	1	0	0.903473	-1.622234	-1.867529					
HF=-902	.5508573 /	NImag = 1 (-262.7878 cm ⁻¹)							
Sum of	electronic	and thermal	Enthalpies=	-902.	409858					
Sum of	electronic	and thermal	Free Energies=	-902.	.464345					

Center	Atomic	Atomic	Сооз	gstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-4.886130	-1.292170	-0.050962
2	6	0	-5.130473	0.059020	0.196802
3	6	0	-4.066967	0.958798	0.236952
4	6	0	-2.745514	0.534758	0.035668
5	6	0	-2.516050	-0.827292	-0.213135
6	6	0	-3.578943	-1.730543	-0.255943
7	14	0	-1.289858	1.739104	0.104550
8	8	0	0.058540	1.053733	-0.455368
9	75	0	1.697788	-0.106932	0.050985
10	8	0	0.729164	-1.540035	-0.239246
11	8	0	2.967412	-0.724207	1.090872
12	8	0	2.590238	0.582210	-1.280399
13	1	0	1.368455	0.864725	1.389985
14	1	0	-1.168343	2.211733	1.523279
15	1	0	-1.681195	2.942364	-0.695699
16	1	0	-4.273239	2.009797	0.425254
17	1	0	-1.500817	-1.176140	-0.374537
18	1	0	-6.146299	0.408178	0.354423
19	1	0	-3.382205	-2.780232	-0.448498
20	1	0	-5.710827	-1.996995	-0.084944
HF=-902	2.5887063				
Sum of	electronic	and thermal	Enthalpies=	-902.	445832
Sum of	electronic	and thermal	Free Energies=	-902.	502785

TS CO_2 activation of the Re-H bond

Center	Atomic	Atomic	Coord	ordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	 6	0	3.064964	0.792309	-0.000008		
2	6	0	3.044431	-0.610061	-0.000008		
3	6	0	4.266300	-1.298755	0.000005		
4	6	0	5.478509	-0.612337	0.000018		
5	6	0	5.485010	0.783047	0.000018		
6	6	0	4.278785	1.480719	0.000005		
7	14	0	1.403724	-1.526592	-0.000026		
8	8	0	0.238092	-0.353354	-0.000017		
9	75	0	-1.727782	-0.367075	0.00004		
10	8	0	-1.637304	-2.127518	-0.000002		
11	8	0	-2.611040	0.065181	-1.425731		
12	8	0	-2.611001	0.065175	1.425765		
13	8	0	0.417275	2.829107	-0.000028		
14	6	0	-0.785276	2.762300	-0.000009		
15	8	0	-1.816729	3.375571	0.00007		
16	1	0	1.331103	-2.398982	-1.204080		

17	1	0	2.129820	1.341929	-0.000017				
18	1	0	4.277138	-2.386039	0.00006				
19	1	0	4.276180	2.565439	0.000005				
20	1	0	6.414752	-1.161266	0.000029				
21	1	0	6.427246	1.321440	0.000028				
22	1	0	-1.086535	1.402788	-0.000005				
23	1	0	1.331097	-2.399010	1.204007				
HF=-1091.22	240315 / NIm	ag = 1 (-164	.9744 cm ⁻¹)						
Sum of elec	ctronic and	thermal Enth	alpies=	-1091.0	067079				
Sum of electronic and thermal Free Energies= -1091.135110									
(final structures already shown under b)									
(s an cady blic								

d) Pathway "3+2 addition"

TS 3+2 addition of silane to perrhenate

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	6	0	-3.414059	-1.080945	0.356490		
2	6	0	-4.700787	-1.492101	0.017119		
3	6	0	-5.634126	-0.561382	-0.443639		
4	6	0	-5.263632	0.776944	-0.557806		
5	6	0	-3.973137	1.177686	-0.205500		
6	6	0	-3.020050	0.263862	0.266013		
7	14	0	-1.225460	0.826087	0.765848		
8	8	0	0.712368	1.059361	0.689186		
9	75	0	1.930395	-0.068021	-0.086048		
10	8	0	2.817120	0.689275	-1.386148		
11	8	0	2.906405	-0.925517	1.080618		
12	8	0	0.514084	-1.054860	-0.664836		
13	1	0	-0.560675	-0.427000	-0.217431		
14	1	0	-1.241848	0.530674	2.229550		
15	1	0	-3.700711	2.225552	-0.295600		
16	1	0	-2.694105	-1.822388	0.692781		
17	1	0	-5.979544	1.508881	-0.920388		
18	1	0	-4.976836	-2.538803	0.102982		
19	1	0	-6.635553	-0.878534	-0.716062		
20	1	0	-1.399005	2.287495	0.509240		
HF=-902.	5456326 /	NImag = 1 (-	-983.3065 cm ⁻¹)				
Sum of e	lectronic	and thermal	Enthalpies=	-902.	406759		
Sum of e	lectronic	and thermal	Free Energies=	-902.	462836		

GS 3+2 addition

Center	Atomic	Atomic	Coord	inates (Angs	troms)
Number	Number	Type	X	Y	Z
1	 6	0	-4.834409	-1.225954	-0.050694

2	6	C)	-5.050272	0.137275	0.151711	
3	6	C)	-3.963454	1.007277	0.214325	
4	6	C)	-2.647200	0.539304	0.086115	
5	6	C)	-2.445064	-0.835114	-0.118468	
6	6	C)	-3.533052	-1.706036	-0.187418	
7	14	C)	-1.191213	1.730491	0.208008	
8	8	C)	0.156677	1.128022	-0.484770	
9	75	C)	1.604627	-0.119103	-0.069743	
10	8	C)	0.697957	-1.595470	-0.440975	
11	8	C)	2.613615	-0.971467	1.383335	
12	8	C)	2.937549	0.911724	-0.603430	
13	1	C)	-0.973232	2.078019	1.643103	
14	1	C)	-1.601883	2.985369	-0.492101	
15	1	C)	-4.146947	2.069181	0.359660	
16	1	C)	-1.436261	-1.223192	-0.227254	
17	1	C)	-6.061128	0.519791	0.252944	
18	1	C)	-3.358300	-2.764684	-0.348596	
19	1	C)	-5.677074	-1.907947	-0.104598	
20	1	C)	3.179138	-0.333646	1.828739	
HF=-902	2.5715894						
Sum of	electronic	and thermal	. Enth	alpies=	-902.425969		
Sum of electronic and thermal Free Energies= -902.485180							

TS CO_2 attack on Re-OH

Center	Atomic	Atomic	Coo	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z				
1	 6	0	3.400378	-0.871749	1.034412				
2	6	0	4.440211	-1.251420	0.187205				
3	6	0	4.568900	-0.648575	-1.062413				
4	6	0	3.659123	0.331502	-1.458082				
5	6	0	2.623692	0.716540	-0.609706				
6	6	0	2.482372	0.117154	0.653331				
7	14	0	1.078956	0.603156	1.792037				
8	8	0	-0.381104	0.407724	1.027457				
9	75	0	-1.401591	-0.726113	-0.129474				
10	8	0	-2.746200	-1.465363	0.685061				
11	8	0	0.393403	3.000579	-0.771181				
12	6	0	-0.766194	2.977761	-0.353023				
13	8	0	-1.511331	3.708865	0.285618				
14	8	0	-1.907622	0.694998	-1.098007				
15	8	0	-0.456432	-1.820551	-1.086585				
16	1	0	1.159083	2.006384	2.248801				
17	1	0	1.150052	-0.303945	2.976183				
18	1	0	1.918550	1.481964	-0.920021				
19	1	0	3.298383	-1.358172	1.999942				
20	1	0	3.753125	0.797372	-2.433087				
21	1	0	5.139873	-2.021134	0.495963				
22	1	0	5.372024	-0.946396	-1.728629				
23	1	0	-1.353757	1.920914	-0.706336				
HF= -10	91.2103056	/ NImag = 1	(-558.7799 cm ⁻¹)						
Sum of	electronic	and thermal	Enthalpies=	-1091.	053225				
Sum of	electronic	and thermal	Free Energies=	-1091.	119759				
(final stru	uctures already	y shown under	b)						

8. NMR spectra

8.1 Hydrosilylation of CO₂ NMRs

Figure S2. [Pyridinium][ReO₄] (2 mol%) in C₆D₆ (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (2.5 bar). Start point.

Figure S3. [Pyridinium][ReO₄] (2 mol%) in C₆D₆ (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (2.5 bar). End point after heating for 16 hr at 80 °C.

Figure S4. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in C₆D₆ (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S5. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and air (1 bar). Start point.

Figure S6. $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and air (1 bar). End point after heating for 1 hr at 80 °C.

Figure S7. ¹H NMR spectra after heating 80 °C for 16 h for the reaction of $[N(hexyl)_4][Br]$ (5 mol%), Ph₂SiH₂ (0.2 mmol), and CO₂ in C₆D₆ (0.5 mL). No observed consumption of hydrosilane or formation of products.

Figure S8. $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in C_6D_6 (0.5 mL), with diphenylsilane (0.2 mmol) and CO_2 (1 bar).

Figure S9. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S10. $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S11. $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S12. $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S13 ¹H NMR stack plot for the reaction of triethylsilane (0.2 mmol), CO₂ (1 bar), cat (2.5 mol%) in d₃-MeCN heated at 80 $^{\circ}$ C for a total of 24 hr. No reaction.

Figure S14 ¹H NMR stack plot for the reaction of triethoxysilane (0.2 mmol), CO_2 (1 bar), cat (2.5 mol%) in d₃-MeCN heated at 80 °C for a total of 24 hr. No reaction.

Figure S15. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₅-Py (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S16. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₇-DMF (0.5 mL), with phenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S17. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₇-DMF (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S18 Triphenylsilane reaction (0.2 mmol), CO₂ (1 bar), cat. (2.5 mol %) in d₇-DMF heated at 150 °C 8 h. Start point.

Figure S19 Triphenylsilane reaction (0.2 mmol), CO₂ (1 bar), cat. (2.5 mol %) in d₇-DMF heated at 150 °C 8 h. End point.

Figure S20 Triphenylsilane reaction (0.2 mmol), CO₂ (1 bar), cat. (2.5 mol %) in d₇-DMF heated at 150 °C 8 h. After hydrolysis.

Figure S21. Multiplet at 2.09 ppm for CDH₂N(CD₃)₂ in d₇-DMF

Figure S22. $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (2 bar).

Figure S23. [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₇-DMF (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar).

Figure S24. ¹H NMR spectra for reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) in d₇-DMF at room temperature with 2.5 mol% [N(hexyl)₄][ReO₄] **2**, showing consumption of diphenylsilane and growth of Si-OMe products/ Si-H byproducts.

Figure S25. ¹H NMR spectra for reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) in d₇-DMF at room temperature with 2.5 mol% [N(hexyl)₄][ReO₄] **2**, showing growth of formate products/intermediates.

Figure S26. ¹³C NMR spectra for reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) in d₇-DMF at room temperature with 2.5 mol% [N(hexyl)₄][ReO₄] **2**, showing growth of Si-OMe products.

Figure S27. ¹³C NMR spectra for reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) in d₇-DMF at room temperature with 2.5 mol% [N(hexyl)₄][ReO₄] **2**, showing growth of formate products.

Figure S28. ¹H NMR spectrum of reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) with 2.5 mol% [N(hexyl)₄][ReO₄] **2** in d₇-DMF at room temperature after hydrolysis, showing formate and methanol products.

Figure S29. ¹³C NMR spectrum of reaction of Ph_2SiH_2 with ¹³CO₂ (1 bar) with 2.5 mol% [N(hexyl)₄][ReO₄] **2** in d₇-DMF at room temperature after hydrolysis, showing formate and methanol products.

· ~ (Ppm)

Figure S30. Stacked ¹H NMR spectra for the uncatalysed hydrosilylation of CO_2 (1 bar) with Ph_2SiH_2 (0.2 mmol) in d₇-DMF (0.5 mL) at room temperature. Diphenylsilane is consumed after 144 h.

Figure 31. ¹³C{¹H} NMR spectrum of a stoichiometric reaction between $[ReO_4][N(Hexyl)_4]$ (20 mg) in C₆D₆ (0.5 mL) with 1 bar of ¹³CO₂. No observed reactivity, even after heating.

Figure S32. ¹H NMR spectra for the reaction of $[ReO_4][N(Hexyl)_4]$ (32 mg, 0.054 mmol) with 1 eq. of diphenylsilane (10 μ L, 0.054 mmol) in C₆D₆ (0.5 mL).

Figure S33. ²⁹Si NMR spectra for the reaction of $[\text{ReO}_4][N(\text{Hexyl})_4]$ (32 mg, 0.054 mmol) with 1 eq. of diphenylsilane (10 µL, 0.054 mmol) in C₆D₆ (0.5 mL).

Figure S34. ESI mass spectrometry collected in negative mode for brown precipitate for the reaction of $[ReO_4][N(Hexyl)_4]$ (32 mg, 0.054 mmol) with 1 eq. of diphenylsilane (10 µL, 0.054 mmol) in C₆D₆ (0.5 mL).at 80 °C showing a variety of products due to siloxane and rhenium-oxo cluster formation.

8.2 N-Methylation NMRs

Figure S35 Methylation of $HN^{i}Pr_{2}$ in d₃-MeCN with $[N(hexyl)_{4}][ReO_{4}]$ **2** (2.5 mol%), diphenylsilane (4 eq.), CO₂ (2 bar) heated at 80 °C for 2 h.

Figure S36 Methylation of H_2N^iPr in d₃-MeCN with $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%), diphenylsilane (8 eq.), CO₂ (2 bar) heated at 80 °C for 2 h.

Figure S37 Methylation of Piperidine in d₃-MeCN with $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%), diphenylsilane (8 eq.), CO₂ (2 bar) heated at 80 °C for 2 h.

Figure S38 Methylation of Pyrollidine in d_3 -MeCN with $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%), diphenylsilane (4 eq.), CO₂ (2 bar) heated at 80 °C for 2 h.

Figure S39 Methylation of Morpholine in d₃-MeCN with $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%), diphenylsilane (4 eq.), CO₂ (2 bar) heated at 80 °C for 2 h.

Figure S40. Comparison of rate of consumption of diphenylsilane (0.2 mmol) for the catalysed (5 mol%) and non-catalysed N-methylation of ${}^{i}Pr_{2}NH$ (0.05 mmol) in d₇-DMF (0.5 mL).

Figure S41 Methylation of N-methylaniline in d₃-MeCN with $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%), phenylsilane (4 eq.), CO₂ (2 bar) at room temperature. Star signifies resonances due to CH₂(NMePh)₂.

8.3 Hydrosilylation of Aldehydes NMRs

Figure S42 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and benzaldehyde (0.2mmol), 80 °C.

Figure S43 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-bromobenzaldehyde (0.2mmol),80 °C.

Figure S44 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-methylbenzaldehyde (0.2mmol), 80 °C.

Figure S45 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-methoxybenzaldehyde (0.2mmol), 80 °C.

Figure S46 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 3-methoxybenzaldehyde (0.2mmol), 80 °C.

Figure S47 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and trimethylacetaldehyde (0.2mmol), 80 °C.

Figure S48 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and myrtenal (0.2mmol), 80 °C.

Figure S49 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and crotonaldehyde (0.2mmol), 80 °C.

Figure S50 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and Butyraldehyde (0.2mmol), 80 °C.

8.4 Hydrosilylation of Ketones NMRs

Figure S51 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and acetophenone (0.2mmol), 80 °C.

Figure S52 $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-bromoacetophenone (0.2mmol), 80 °C.

Figure S53 $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-methylacetophenone (0.2mmol), 80 °C.

Figure S54 $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 4-methoxyacetophenone (0.2mmol), 80 °C.

Figure S55 $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and 3-methoxyacetophenone (0.2mmol), 80 °C.

Figure S56 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and benzophenone (0.2mmol), 80 °C.

Figure S57 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq) and pinacolone (0.2mmol), 80 °C.

Figure S58 1:1:1 triplet for HD formation from the reaction of $PhSiH_3$ and H_2O

Figure S59 1:1:1 triplet for CH₂D formation from the reaction of PhSiH₃ and Acetophenone

9. GC-MS data

9.1 Hydrosilylation of CO₂

Figure S60 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with diphenylsilane (0.2 mmol) and CO₂ (1 bar), 80 °C.

9.2 Hydrosilylation of aldehydes

	R.					AREA		HEIGHT		
PEAK	TIME	I. TIME	F. TIME	M/Z	AREA	%	HEIGHT	%	A/H	NAME
1	12.130	12.035	12.200	TIC	7332756	21.18	2807960	26.65	2.61	Silane, trimethylphenyl-
2	13.280	13.160	13.450	TIC	23986415	69.29	6580767	62.46	3.64	Benzyl alcohol
3	15.782	15.730	15.870	TIC	1471163	4.25	545611	5.18	2.70	
4	28.001	27.940	28.085	TIC	597945	1.73	147760	1.40	4.05	1-Hexanamine, N,N-dihexyl-
5	31.630	31.575	31.710	TIC	1228922	3.55	453944	4.31	2.71	1-Hexanamine, N,N-dihexyl-

Figure S61 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and benzaldehyde (0.2 mmol), 80 °C.

Figure S62 $[N(hexyl)_4][ReO_4]$ **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-bromobenzaldehyde (0.2 mmol), 80 °C.

Figure S63 $[N(hexyl)_4][ReO_4]$ 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-methylbenzaldehyde (0.2 mmol), 80 °C.

Figure S64 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-methoxybenzaldehyde (0.2 mmol), 80 °C.

Figure S65 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 3-methoxybenzaldehyde (0.2 mmol), 80 °C.

Figure S66 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and trimethylacetaldehyde (0.2 mmol), 80 °C.

PEAK	R.	I.	F.	M/Z	AREA	AREA	HEIGHT	HEIGHT	A/H	NAME
	TIME	TIME	TIME			%		%		
1	12.105	12.040	12.165	TIC	4780483	11.26	1894434	14.54	2.52	Silane, trimethylphenyl-
2	16.470	16.430	16.530	TIC	880203	2.07	355415	2.73	2.48	Bicyclo[3.1.1]heptan-2-one, 6,6-dimethyl-,
										(1R)-
3	18.319	18.205	18.395	TIC	32799156	77.23	9213222	70.72	3.56	Bicyclo[3.1.1]hept-2-ene-2-methanol, 6,6-
										dimethyl-
4	20.443	20.390	20.505	TIC	3020297	7.11	1163379	8.93	2.60	Methyl 6,6-dimethylbicyclo[3.1.1]hept-2-ene-
										2-carboxylate
5	31.609	31.565	31.670	TIC	990025	2.33	400831	3.08	2.47	1-Hexanamine, N,N-dihexyl-

Figure S67 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and myrtenal (0.2 mmol), 80 °C.

9.3 Hydrosilylation of ketones

PEAK	R.	I.	F.	M/Z	AREA	AREA	HEIGHT	HEIGHT	A/H	NAME
	TIME	TIME	TIME			%		%		
1	12.092	12.010	12.150	TIC	2073273	20.22	813009	25.32	2.55	Silane, trimethylphenyl-
2	14.063	13.970	14.270	TIC	7946823	77.50	2316391	72.15	3.43	Benzenemethanol, .alphamethyl-
3	31.602	31.560	31.665	TIC	234178	2.28	81138	2.53	2.89	1-Hexanamine, N,N-dihexyl-

Figure S68 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and acetophenone (0.2 mmol), 80 °C.

Figure S69 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-bromoacetophenone (0.2 mmol), 80 °C.

2	1/.1/4	17.100	17.540	ne	0105547	70.12	1/55192	08.25	5.52	Denzenemeuration, .arpha.,4-uniteuryi-
3	17.887	17.820	17.980	TIC	458495	5.20	105836	4.11	4.33	m-Toluamide
4	31.595	31.545	31.690	TIC	416497	4.72	129998	5.05	3.20	1-Hexanamine, N,N-dihexyl-

Figure S70 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-methylacetophenone (0.2 mmol), 80 °C.

PEAK	R.	I. TIME	F. TIME	M/Z	AREA	AREA	HEIGHT	HEIGHT	A/H	NAME
	TIME					%		%		
1	12.091	12.010	12.155	TIC	1816899	24.77	710591	34.09	2.56	Silane, trimethylphenyl-
2	21.542	21.485	21.660	TIC	1832681	24.98	518227	24.87	3.54	4-Methoxyphenyl methyl carbinol
3	22.670	22.600	22.865	TIC	3181315	43.36	691857	33.20	4.60	4-Acetylanisole
4	31.596	31.545	31.690	TIC	505482	6.89	163408	7.84	3.09	1-Hexanamine, N,N-dihexyl-

Figure S71 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 4-methoxyacetophenone (0.2 mmol), 80 °C.

PEAK	R.	I.	F.	M/Z	AREA	AREA	HEIGHT	HEIGHT	A/H	NAME
	TIME	TIME	TIME			%		%		
1	12.104	12.040	12.170	TIC	6908126	14.25	2844526	22.32	2.43	Silane, trimethylphenyl-
2	21.434	21.225	21.570	TIC	40994993	84.53	9692031	76.05	4.23	3-Methoxyphenyl methyl carbinol
3	31.608	31.555	31.680	TIC	591836	1.22	208074	1.63	2.84	1-Hexanamine, N,N-dihexyl-

Figure S72 [N(hexyl)₄][ReO₄] 2 (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and 3-methoxyacetophenone (0.2 mmol), 80 °C.

Figure S73 [N(hexyl)₄][ReO₄] **2** (2.5 mol%) in d₃-MeCN (0.5 mL), with phenylsilane (1.2 eq.) and benzophenone (0.2 mmol), 80 °C.