Supporting Information

Aggregation and redispersion of silver species on the alumina and sulphated alumina supports for soot oxidation

Yuxi Gao^a, Xiaodong Wu^{a,*}, Shuang Liu^b, Masaru Ogura^{c,*}, Minghan Liu^a and Duan

Weng^a

^a Key Laboratory of Advanced Materials of Ministry of Education of China, School of

Materials Science and Engineering, Tsinghua University, Beijing 100084, China

^b Institute of Materials Science and Engineering, Ocean University of China, Qingdao

266100, China

^c Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan

Ogura)

^{*}Corresponding authors

E-mail addresses: wuxiaodong@tsinghua.edu.cn (X. Wu), oguram@iis.u-tokyo.ac.jp (M.

1. Electron beam induced effects on the morphologies of the catalyst and soot particles

Fig. S1 A typical area of interest with a layer of soot and one silver particle of AgAl acquired at (a) 0 s and (b) after 5 min observation in 1 Pa O₂ at room temperature.

2. CO_x profiles in soot-TPO

Fig. S2 CO_x profiles during the uncatalyzed and catalyzed soot-TPO runs.

Fig. S3 CO_x profiles during the first and second runs of soot-TPO over the spent

catalysts.

3. Cycle-TG analysis

Fig. S4 Cycle-TG curves of (a) AgAl and (b) AgSAl in N_2 (black) and air (red).

4. TGA results

Fig. S5 TGA curves of the catalysts.

5. ETEM results

Fig. S6 (a) ETEM, (b) STEM and (c) EELS analyses of AgAl-Sp.