Supplementary Information: CH₄ and H₂S reforming to CH₃SH and H₂catalyzed by metal promoted Mo₆S₈ cluster: a first-principles micro-kinetic study

William Taifan,[†]Adam Arvidsson,[‡]Eric Nelson, [†] Anders Hellman,[‡] and Jonas Baltrusaitis^{*,†}

†Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
‡Department of Applied Physics, Chalmers University of Technology, SE-421 96 Göteborg, Sweden

Figure S1. Structures adsorbed on Mo₆S₈

2.2 3.6	2.3 1.9	2.8
CH3_H_TS-m [H*,CH3*]	CH3_H_TS-ts	CH3_H_TS-p [*,CH4*]
	2.2	2.4 3.7
CH3_S_TS-m [CH3*,S*]	CH3_S_TS-ts	CH3_S_TS-p [*,CH3S*]
2.3 3.5	2.5 2.0	2.6
CH3S_H_TS-m [H*,CH3S*]	CH3S_H_TS-ts	CH3S_H_TS-p [*,CH3SH*]

3.9	2.5	2.6
CH3_SH_TS-m [CH3*,SH*]	CH3_SH_TS-ts	CH3_SH_TS-p [*,CH3SH*]
		3.3 2.0
H_H_TS-m [H*,H*]	H_H_TS-ts	H_H_TS-p [*,H2*]
2.2	2.1	
H*	S*	*

Figure S2. Structures adsorbed on NiMo₆S₈

2.4	2.5 2.3 3.5	4.0 3.3
CH3_S_TS-m [*,CH3S*]	CH3_S_TS-ts	CH3_S_TS-p [CH3*,S*]
2.5	2.6 3.0	2.7
CH3S_H_TS-m [H*,CH3S*]	CH3S_H_TS-ts	CH3S_H_TS-p [*,CH3SH*]
2.6 3.8	2.5 3.4	2.4
CH3_SH_TS-m [*,CH3SH*]	CH3_SH_TS-ts	CH3_SH_TS-p [CH3*,SH*]

2.3 1.7 1.9 3.0	2.0
H_H_TS-ts	H_H_TS-p
	[*,H2*]
2.08	
H*	
	2.3 H_H_TS-ts 2.08 1.54 0 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54

Figure S3. Structures adsorbed on KM06S8

	2.5	2.5
CH3_S_TS-m [CH3*,S*]	CH3_S_TS-ts	CH3_S_TS-p [*,CH3S*]
2.6 2.5	1.8 2.6	2.6
CH3S_H_TS-m [H*,CH3S*]	CH3S_H_TS-ts	CH3S_H_TS-p [*,CH3SH*]
3.6 2.5	2.6 2.5	2.6
CH3_SH-TS-m [CH3*,SH*]	CH3_SH-TS-ts	CH3_SH-TS-p [*,CH3SH*]

H_H_TS-m H_	_H_TS-ts	H_H_TS-p
[H*,H*]		[*,H2*]
* *H	43 2.14 1 1	

Figure S4. Gibbs free energy landscapes for the bare, K- and Ni-promoted Mo_6S_8 clusters as evaluated at 1200 K. Two parallel pathways are shown, a more direct pathway from [CH₃*,*] and [*,SH*], and a longer, stepwise pathway through splitting SH and forming CH₃S which is then hydrogenated (lighter shade).

Figure S5. The coverage of various reaction intermediates on the bare (grey), K-promoted (purple) and Ni-promoted (green) Mo_6S_8 clusters as a function of temperature.

Figure S7. Charge density difference between the promoted cluster and the promoter atom isolated for K- and Ni-Mo₆S₈. Blue meaning reduced charge (more positive) and yellow an increased charge (more negative). Clearly both K and Ni donate charge to the cluster, which is distributed equally over the cluster atoms. The isosurfaces demonstrate that the electron transferred from K has an s-character while the electron transferred from Ni has a d-character.

