Supporting Information

Rational design of porous binary Pt-based nanodendrites as efficient catalysts for glucose

oxidation reaction over a wide pH range

Kamel Eid^{a+}, Yahia H. Ahmad^{a+}, Siham Y. AlQaradawi^a and Nageh K. Allam^b,*

^aDepartment of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar ^bEnergy Materials Lab (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt *Corresponding author E-mail: <u>nageh.allam@aucegypt.edu</u> [†]K. Eid and Y. H. Ahmad contributed equally to the work.

Figure S1. (a) CVs measured in N_2 -saturated 0.1 M NaOH at a scan rate of 50 mV s⁻¹, and (b) Tafel plots of the as-prepared catalysts.

Figure S2. CVs measured in N₂-saturated 0.1 M HClO₄ at a scan rate of 50 mV s⁻¹.

Figure S3. CVs measured in N_2 -saturated 0.1 M PBS (pH 7.4) at a scan rate of 50 mV s⁻¹.

Figure S4. Lattice strain of the as-synthesized porous binary nanodendrites