Supporting Information for

Nitrile hydroboration reactions catalysed by simple nickel salts, bis(acetylacetonato)nickel(II) and its derivatives

Go Nakamura, Yumiko Nakajima,* Kazuhiro Matsumoto, Venu Srinivas and Shigeru Shimada*

Interdisciplinary Research Centre for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail address: yumiko-nakajima@aist.go.jp (Y. Nakajima), s-shimada@aist.go.jp (S. Shimada).

Contents

Experimental details and compound characterization data
Figure 1. Molecular structure of <i>t</i> BuCOCHC(<i>t</i> Bu)OBcat with 50% probability ellipsoids.
Table S1. Crystal data and details of the crystal structure determination for tBuCOCHC(tBu)OBcat. S20

Experimental Details and Compound Characterization Data

General considerations

Unless otherwise noted, all manipulations were performed under a nitrogen atmosphere using Schlenk techniques or a glove box. Benzene, toluene, hexane, and THF were purified by a solvent purification system (MBraun SPS-800 or Glass Contour Ultimate Solvent System). Other solvents (1,2-dichloroethane, benzene- d_6) were dried over CaH₂ or sodium benzophenone ketyl and distilled. All reagents were purchased from commercial suppliers and used without further purification unless otherwise noted. Catecholborane was purchased from Sigma-Aldrich Ltd. and purified by distillation. ¹H, ¹¹B, and ¹³C{¹H} NMR spectra (¹H, 400 MHz; ¹¹B, 128 MHz; ¹³C, 101 MHz) were recorded using a Bruker AVANCE 600 spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signals for ¹H and ¹³C, and to boron trifluoride diethyl ether complex (BF₃·OEt₂, 0.0 ppm) as an external reference for ¹¹B.

Catalytic Hydroborations

A typical procedure (Table 2, entry 1) is as follows. All reactions were carried out under nitrogen atmosphere. To a stirred solution of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)nickel(II) (**3**) (0.001 mmol) in benzene (0.5 mL), was added benzonitrile (20.6 mg, 0.20 mmol) at 25 °C. After the mixture was stirred for 1 min, catecholborane (52.8 mg, 0.44 mmol) was added, and then the solution was stirred at room temperature for 18 hours. PhSiMe₃ (13.1 mg, 0.087 mmol) as an internal standard was added to the reaction mixture, and ¹H NMR was measured to determine the NMR yield of PhCH₂N(Bcat)₂ (>99%). The resulting solution was then diluted by benzene (30 mL) and filtered to remove precipitates. The filtrate was concentrated to dryness to give analytically pure PhCH₂N(Bcat)₂ (65.9 mg, 0.19 mmol, 93%).

Compound Characterization Data

The final product was characterized by ¹H, ¹³C{¹H} and ¹¹B{¹H} NMR due to the instability of the hydroborated products under air. $CH_3CH_2N(Bcat)_2$ and $PhCH_2N(Bcat)_2$ were identified by comparing their ¹H, ¹¹B, and ¹³C{¹H} NMR data with those previously reported.¹

 $CH_{3}CH_{2}(Bcat)_{2}$ ¹H NMR (C₆D₆, 25 °C): 7.03 (m, 4H, Bcat), 6.76 (m, 4H, Bcat), 3.34 (q, 2H, CH₂N, J = 7.2 Hz), 1.11 (t, 3H, CH₃, J = 7.2 Hz). ¹¹B NMR (C₆D₆, 25 °C): 26.8 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.9, 122.5, 112.3, 39.4, 17.7.

¹H NMR:

 ${}^{13}C{}^{1}H} NMR:$

 $CH_3CH_2CH_2N(Bcat)_2$ ¹H NMR (C₆D₆, 25 °C): 7.04 (m, 4H, B*cat*), 6.76 (m, 4H, B*cat*), 3.34 (t, 2H, $CH_2N, J = 7.6$ Hz), 1.56 (m, 2H, NCH₂-CH₂-CH₃), 0.80 (t, 3H, CH₃, J = 7.2Hz). ¹¹B NMR (C₆D₆, 25 °C): 27.0 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.9, 122.5, 112.3, 46.2, 25.6, 11.2.

^{*i*}PrCH₂N(Bcat)₂ ¹H NMR (C₆D₆, 25 °C): 7.05 (m, 4H, Bcat), 6.76 (m, 4H, Bcat), 3.25 (d, 2H, CH₂N, J = 7.6 Hz), 1.90 (m, 1H, (CH₃)₂CH), 0.84 (d, 6H, CH₃, J = 6.4 Hz). ¹¹B NMR (C₆D₆, 25 °C): 26.9 (bs, *B*cat). ¹³C {¹H} NMR (C₆D₆, 25 °C): 148.9, 122.6, 112.3, 51.9, 30.4, 20.0.

¹H NMR:

ppm

 ${}^{13}C{}^{1}H} NMR:$

*PhCH*₂*CH*₂*N*(*Bcat*)₂ ¹H NMR (C₆D₆, 25 °C): 7.15 (d, 2H, J = 7.2 Hz, Ar-*H*), 7.10 (t, 2H, J = 7.2 Hz, Ar-*H*), 7.05 (m, 4H, B*cat*), 7.00 (t, 1H, J = 7.2 Hz, Ar-*H*), 6.77 (m, 4H, B*cat*), 3.60 (t, 2H, J = 7.6 Hz, *CH*₂N), 2.80 (t, 2H, J = 7.6 Hz, Ph*CH*₂). ¹¹B NMR (C₆D₆, 25 °C): 27.0 (bs, *B*cat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.8, 139.3, 129.3, 128.7, 128.5, 128.3, 122.6, 112.3, 46.2, 39.0.

PhCH₂N(Bcat)₂ ¹H NMR (C₆D₆, 25 °C): 7.40 (d, 2H, *J* = 7.2 Hz, Ar-*H*), 7.11 (t, 2H, *J* = 7.6 Hz, Ar-H), 7.05 (m, 1H, Ar-H), 6.99 (m, 4H, Bcat), 6.73 (m, 4H, Bcat), 4.55 (s, 2H, CH₂N). ¹¹BNMR (C₆D₆, 25 °C): 27.2 (bs, Bcat). ¹³C {¹H} NMR (C₆D₆, 25 °C): 148.8, 140.6, 139.4, 128.8, 127.4, 122.6, 112.3, 47.9.

(*o-tolyl*)*CH*₂*N*(*Bcat*)₂ ¹H NMR (C₆D₆, 25 °C): δ 7.28 (d, 2H, *J* = 8.0 Hz, Ar-*H*), 6.98 (m, 6H, Ar- *H* and B*cat*), 6.88 (d, 1H, *J* = 7.6 Hz, Ar-*H*), 6.72 (m, 4H, B*cat*), 4.57 (s, 2H, *CH*₂N), 2.15 (s, 3H, *CH*₃). ¹¹B NMR (C₆D₆, 25 °C): δ 27.1 (bs, B*cat*). ¹³C{¹H} NMR (C₆D₆, 25 °C): δ 148.8, 138.0, 135.1, 130.4, 128.3, 126.9, 126.7, 125.1, 122.6, 112.4, 45.38, 19.0.

(*m*-tolyl)CH₂N(Bcat)₂ ¹H NMR (C₆D₆, 25 °C): δ 7.27 (m, 2H, Ar-*H*), 7.11 (m, 1H, Ar-*H*), 6.99 (m, 4H, Bcat), 6.88 (d, 1H, *J* = 7.6 Hz, Ar-*H*), 6.72 (m, 4H, Bcat), 4.59 (s, 2H, CH₂N), 2.05 (s, 3H, CH₃). ¹¹B NMR (C₆D₆, 25 °C): δ 27.0 (bs, *B*cat). ¹³C{¹H} NMR (C₆D₆, 25 °C): δ 148.8, 140.5, 138.2, 128.9, 127.9, 124.6, 122.6, 112.3, 47.9, 21.3.

 $(p-tolyl)CH_2N(Bcat)_2$ ¹H NMR (C₆D₆, 25 °C): 7.37 (d, 2H, J = 8.0 Hz, Ar-H), 7.00 (m, 4H, Bcat), 6.95 (d, 2H, J = 8.0 Hz, Ar-H), 6.72 (m, 4H, Bcat), 4.57 (s, 2H, C H_2 N), 2.06 (s, 3H, C H_3). ¹¹B NMR (C₆D₆, 25 °C): 27.1 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.9, 137.7, 136.8, 129.5, 122.5, 112.3,

¹H NMR:

47.7, 21.0.

$(p-MeOC_6H_4)CH_2N(Bcat)_2$ ¹H NMR (C₆D₆, 25 °C): 7.38 (d, 2H, J = 8.8 Hz, Ar-H), 7.02 (m, 4H, Bcat), 6.73 (m, 6H, Ar-H and Bcat), 4.54 (s, 2H, C H_2 N), 3.26 (s, 3H, OC H_3). ¹¹B NMR (C₆D₆, 25 °C): 27.2 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 159.4, 148.9, 132.8, 136.8, 129.1, 122.6, 114.2, 112.3, 54.8, 47.4.

MeO O B O

¹H NMR:

 $^{13}C{^{1}H} NMR:$

 $(p-F_3CC_6H_4)CH_2N(Bcat)_2$ ¹H NMR (C₆D₆, 25 °C): 7.24 (d, 2H, J = 8.0 Hz, Ar-H), 7.11 (d, 2H, J = 8.0 Hz, Ar-H), 7.01 (m, 4H, Bcat), 6.75 (m, 4H, Bcat), 4.39 (s, 2H, C H_2 N). ¹¹B NMR (C₆D₆, 25 °C): 26.8 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.7, 144.2, 136.8, 129.5, 125.8, 127.5, 122.8, 112.4, 47.3.

¹H NMR:

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR:

 $(m-ClC_6H_4)CH_2N(Bcat)_2$ ¹H NMR (C₆D₆, 25 °C): 7.47 (s, 1H, Ar-*H*), 7.10 (d, 1H, *J* = 8.0 Hz, Ar-*H*), 6.98 (m, 5H, Ar-*H* and Bcat), 6.74 (m, 5H, Ar-*H* and Bcat), 4.35 (s, 2H, CH₂N). ¹¹B NMR (C₆D₆, 25 °C): 26.9 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.7, 142.6, 134.7, 130.2, 128.3, 125.5, 122.7, 112.4, 47.3.

(2-thienyl)CH₂N(Bcat)₂

¹H NMR (C₆D₆, 25 °C): 7.00 (m, 4H, B*cat*), 6.74 (m, 6H, thienyl-*H* and B*cat*), 6.65 (m, 1H, thienyl-*H*), 4.63 (s, 2H, C*H*₂N). ¹¹B NMR (C₆D₆, 25 °C): 26.8 (bs, *B*cat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 148.8, 143.6, 127.0, 126.0, 125.0, 122.6, 112.4, 42.7.

Reaction of 3 with HBcat. A J-young NMR tube was charged with a C₆D₆ solution (0.4 mL) of **3** (5.0 mg, 0.012 mmol) and HBcat (5.5 mg, 0.046 mmol). After 15 min at room temperature, formation of black precipitate was observed. Formation of [*t*BuCOCHC(*t*Bu)O– κ O, κ O']Bcat was supported by both ¹H and ¹¹B{¹H} NMR although all the signals appeared as significantly broad signals due to the existence of paramagnetic nickel species. In addition, formation of several unidentified products, which exhibit broad signals as δ 28.9, 23.3, 18.7 ppm in the ¹¹B NMR spectrum, was also confirmed. After filtration, slow evaporation of the filtrate afforded single crystals of [*t*BuCOCHC(*t*Bu)O– κ O, κ O']Bcat.

[*t*BuCOCHC(*t*Bu)O-κO,κO']Bcat: ¹H NMR (C₆D₆, 25 °C): 7.11 (dd, 2H, J = 5.4, 3.6 Hz, Bcat), 6.84 (dd, 2H, J = 5.4, 3.6 Hz, Bcat), 5.82 (s, 1H, CH), 0.84 (s, 18H, *t*Bu). ¹¹B NMR (C₆D₆, 25 °C): 9.7 (bs, Bcat). ¹³C{¹H} NMR (C₆D₆, 25 °C): 201.3, 151.9, 120.1, 110.2, 92.9, 39.5, 26.9.

Single-crystal X-ray diffraction studies. The single crystal X-ray diffraction measurements of $[tBuCOCHC(tBu)O-\kappa O,\kappa O']Bcat$ was performed under a cold nitrogen stream on a Rigaku XtaLAB P200 diffractometer with a Pilatus 200K detector using multi-layer mirrore monochromated Mo K α radiation. The determination of crystal systems and unit cell parameters and data processing were performed with the *CrystalClear* program package. The data sets were corrected for Lorentz and polarzation effects and absorption. The structure was solved by direct methods using SIR97 program,² and refined by full-matrix least squares calculations on F^2 for all reflections (SHELXL-97)³. The structure was not fully refined due to the bad quality of the crystal and the final R values remain 0.1208 (R₁) and 0.2771 (*w*R₂).

Figure 1. Molecular structure of [*t*BuCOCHC(*t*Bu)O–κO,κO']Bcat with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): B–O1 1.463(3), B–O2 1.452(3), B–O3 1.490(2), O1–B–O2 107.1(2), O3–B–O3* 108.9(2).

formula	$C_{17}H_{23}O_4B$	Ζ	4
fw	302.17	D_{calcd} (g/cm ³)	1.200
T (K)	93(2)	R1, wR2 [I > 2σ(I)]	0.1208, 0.2771
cryst system	Orthorhombic	R1, wR2 (all data)	0.1386, 0.2945
space group	<i>P</i> bnm (#62)	GOF	1.371
a (Å)	9.246(3)		
b (Å)	12.853(4)		
<i>c</i> (Å)	14.074(4)		
α (deg)	90		
β (deg)	90		
γ (deg)	90		
$V(Å^3)$	1672.5(9)		

Table S1. Crystal data and details of the crystal structure determination for tBuCOCHC(tBu)OBcat.

References

- 1) A. Y. Khalimon, P. Farha, L. G. Kuzmina and G. I. Nikonov, Chem. Commun., 2012, 48, 455.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.
- 3) Sheldrick, G. M. Acta Cryst. 2008, A64, 112.