Supporting Information

Selective Hydrogenation of Unsaturated Carbonyls by Ni-Fe based Alloy Catalysts

Wahyu Satpriyo Putro,^[a] Takashi Kojima,^[a] Takayoshi Hara,^[a] Nobuyuki Ichikuni,^[a] and Shogo Shimazu^{*[a]}

^[a] Chiba University, Graduate School of Engineering, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

gure S1. XRD patterns of (a) Ni-M (M = Fe, Ti, Co, In, Ga, Al) HT-673 catalysts, and (b) Ni-Fe(2)(wt. 25%) supported on M_xO_y ($M_xO_y = SiO_2$, Taeniolite, Hydrotalcite, CeO₂, and Al₂O₃) catalysts.

Figure S2. XRD patterns of (a) Ni-Fe(2) without hydrothermal and H₂ treatment, (b) Ni-Fe(2) hydrothermal at 423 K, without H₂ treatment, (c) Ni-Fe(2) without hydrothermal, H₂ treatment at 573 K, (d) Ni-Fe(2) hydrothermal at 423 K and H₂ treatment at 573 K.

Figure S3. Effect of hydrothermal for catalytic performance of Ni-Fe alloy catalysts. *Reaction conditions*: C°_{SUBS} = 0.367 M; W_{CAT} = 50 mg (substrate/Ni= 2); $V_{iso-PrOH}$ = 3 mL; P°_{H2} = 10 bar; and T= 423 K. Yield determined by GC using an internal standard technique.

Figure S4. Typical N₂ adsorption-desorption isotherm for Ni-Fe(2); (a) with various temperatures of H₂ treatment, (b) loaded on TiO₂ with various loading amounts of Ni-Fe alloy.

Figure S5. Multi-Rietveld analysis program LH-Riet profiles of powder XRD data of Ni-Fe(2) alloy catalysts with various temperatures of H_2 treatment. Data points (black line); calculated line, (red line); difference line, (green line); marker points (blue vertical line).

Figure S6. Effect of Substrate/Ni ratios on the yield of furfuryl alcohol (FFalc) by using Ni-Fe(2)HT-573 catalysts. *Reaction conditions*: C°_{SUBS} = 0.367 M; $V_{iso-PrOH}$ = 3 mL; P°_{H2} = 10 bar; and T= 423 K. Yield determined by GC using an internal standard technique.

Figure S7. XRD patterns of bulk and TiO₂ supported Ni-Fe alloy with various loading amounts of Ni-Fe. (a) bulk Ni-Fe(2)HT-673, (b) Ni-Fe(wt. 50%)/TiO₂, (c) Ni-Fe(wt. 25%)/TiO₂, (d) Ni-Fe(wt. 10%)/TiO₂, (e) Ni-Fe(wt. 5%)/TiO₂.

Figure S8. Time profile investigation of various loading amount of Ni-Fe alloy supported on TiO₂. *Reaction conditions*: C°_{SUBS} = 73.4 mM; W_{CAT} = 10 mg (Substrate/Ni= 2); $V_{iso-PrOH}$ = 3 mL; P°_{H2} = 10 bar; and T= 423 K.

Figure S9. Effect of (a) initial H₂ pressure and (b) furfural concentration over bulk Ni-Fe(2)HT alloy catalysts.

Catalyst	P _{H2} (MPa)	T (K)	t (min)	Conv. (%)	Sel. of 1 (%)	Ref.
Pt-Cu hollow-core	2	423	720	100	100	[1]
7.5%Pt@g-C ₃ N ₄	1	373	300	95	>99	[2]
Pd-Cu/MgO	0.6	383	30	98	98	[3]
Cu(3):Zn(2):Cr(1):Zr(4)	2	443	210	96	96	[4]
Co/SBA-15	2	423	90	91	96	[5]
Ni-Cu/Al ₂ O ₃	5	403	100	90	100	[6]
Fe(NiFe)O ₄ -SiO ₂	2	363	240	94	100	[7]
Ni-Sn(3-2)HT-673	3	383	75	67	100	[8]
Ni-Fe(2-1)HT-573	1	423	30	90	92	This Work

Table S1. Comparison data for liquid-phase chemoselective hydrogenation of unsaturated carbonyls

T

-0

Ti

References

- [1] S. Huang, N. Yang, S. Wang, Y. Sun, Y. Zhu, *Nanoscale* **2016**, *8*, 14104–14108.
- [2] X. Chen, L. Zhang, B. Zhang, X. Guo, X. Mu, *Sci. Rep.* **2016**, *6*, 28558.
- [3] K. Fulajtárova, T. Soták, M. Hronec, I. Vávra, E. Dobročka, M. Omastová, Appl. Catal. A Gen. 2015, 502, 78–85.
- [4] R. V. Sharma, U. Das, R. Sammynaiken, A. K. Dalai, Appl. Catal. A Gen. 2013, 454, 127–136.
- [5] M. Audemar, C. Ciotonea, K. De Oliveira Vigier, S. Royer, A. Ungureanu, B. Dragoi,
 E. Dumitriu, F. Jérôme, *ChemSusChem* 2015, *8*, 1885–1891.
- S. A. Khromova, M. V. Bykova, O. A. Bulavchenko, D. Y. Ermakov, A. A. Saraev, V.
 V. Kaichev, R. H. Venderbosch, V. A. Yakovlev, *Top. Catal.* 2016, *59*, 1413.
- [7] A. Halilu, T. H. Ali, A. Y. Atta, P. Sudarsanam, S. K. Bhargava, S. B. Abd Hamid, *Energy & Fuels* 2016, *30*, 2216–2226.
- [8] Rodiansono, S. Khairi, T. Hara, N. Ichikuni, S. Shimazu, *Catal. Sci. Technol.* **2012**, *2*, 2139.