Supporting information

The Effect of Potassium on the Steam-Methane Reforming on the Ni₄/Al₂O₃ Surface: A DFT study

Meng-Ru Li, Zhe Lu and Gui-Chang Wang*

(College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China)

*Corresponding author: Gui-Chang Wang. E-mail: wangguichang@nankai.edu.cn

Telephone: +86-22-23503824 (O) Fax: +86-22-23502458

S1 The physical origin of energy barrier in CH₃ and C formation

In order to get the insight of the main factor for the different barriers for CH_4 and CH species on Ni_4/Al_2O_3 and K pre-adsorbed Ni_4/Al_2O_3 , the energetic method developed by Hammer¹ is used for reactions on clean and K pre-adsorbed Ni_4/Al_2O_3 : $CH_4 \rightarrow CH_3 + H$ and $CH \rightarrow C+H$. For reaction $AB \rightarrow A+B$, the barrier can be divided into five terms in equation (1):

$$Ea = \Delta E_{AB}^{g} + E_{AB}^{IS} + E_{\text{int}}^{TS} - E_{A}^{TS} - E_{B}^{TS}$$
 (1)

Where ΔE_{AB}^{g} , E_{AB}^{IS} , E_{a}^{TS} , E_{A}^{TS} and E_{B}^{TS} refer to the bond energy of the gas-phase AB,

the adsorption energy of AB in the IS, a quantitative measurement of interaction between A and B in TS and the adsorption energy of A and B at the TS geometry, respectively.

CH₄ \rightarrow CH₃+H On Ni₄/Al₂O₃ and K pre-adsorbed Ni₄/Al₂O₃, K will promote the C-H scission with a lower barrier of 0.54 eV than that on clean Ni₄/Al₂O₃ (0.63 eV). The interaction between CH₃ and H in TS (E_{int}^{TS}) on clean and K pre-adsorbed Ni₄/Al₂O₃ are approximate shown in Table S1. The higher adsorption energies of CH₃ (E_A^{TS}) and H species (E_B^{TS}) in TS on K pre-adsorbed Ni₄/Al₂O₃ will make up the higher adsorption energy of CH₄ in IS (E_{AB}^{TS}) on K pre-adsorbed Ni₄/Al₂O₃, which gives rise to the lower barrier at the presence of K. As a result, the stronger interaction between the TS species and catalyst (E_A^{TS} and E_B^{TS}) contributes to the promotion effect of K on C-H cleavage in CH₄.

In conclusion, the adsorption energy of TS species is the main factor for the promotion effect of K: the higher adsorption energy of TS species (CH₃ and H species) on K pre-adsorbed Ni₄/Al₂O₃ will decrease the barrier of C-H scission in CH₄. Since the adsorption energy of CH₄ in IS are weak and approximate, the adsorption energies of the CH₃ and H species in TS configuration will be related to the adsorption energies of the CH₃ and H species closely. As shown in Table 1, the higher adsorption energies of CH₃ and H species on K pre-adsorbed Ni₄/Al₂O₃ are in good agreement with the higher adsorption energies of the CH₃ and H species in TS configuration.

CH \rightarrow **C+H** On clean and K pre-adsorbed Ni₄/Al₂O₃, the adsorption energies of CH species on clean and K pre-adsorbed Ni₄/Al₂O₃ are -6.64 eV and -6.56 eV. The adsorption energy of H species in TS configuration (- E_B^{TS}) on K pre-adsorbed

Ni₄/Al₂O₃ is -1.61 eV which is higher than that on clean Ni₄/Al₂O₃ (-0.95 eV). However, the lower adsorption energy of C species in TS configuration (- E_A^{TS}) which is equal to -6.76 eV and the weaker interaction term $E_{\rm int}^{TS}$ (-0.62 eV) give rises to the higher barrier on Ni₄/K-Al₂O₃. Among all the factors, we observed that the lower adsorption energy of the C species in TS configuration E_A^{TS} is the main factor for the higher barrier on K pre-adsorbed Ni₄/Al₂O₃, and the adsorption energy of the C species in TS configuration is supposed to be related to the lower adsorption energy of the C species on Ni₄/K-Al₂O₃ than that on clean Ni₄/Al₂O₃ (-7.56 eV versus -7.40 eV for clean and K pre-adsorbed Ni₄/Al₂O₃).

From the discussion above, it is obvious that the adsorption terms of TS are always the main factor affecting the barrier. Especially, the adsorption energies of CH₃ and C in TS geometry contribute to the different effects of K on C-H cleavage, and are supposed to be resulted from the adsorption energies of the CH₃ and H species. As shown in Figure S1(a), the K promotion effect on C-H cleavage increases in the first steps while the inhibition effect of K on C-H cleavage in the CH₂ and CH species turns stronger with the dehydrogenation steps going on. Furthermore, we will analysis the physical factor for K effect in the consecutive C-H cleavages forming CH_x below.

Table S1 Energy decomposition of the activation barrier in the dissociation of CH_x on clean and K pre-adsorbed Ni₄/Al₂O₃ (unit: eV)

Elementary step		ΔE_{AB}^{g}	E_{AB}^{IS}	$E_{ m int}^{TS}$	E_A^{TS}	$E_{\scriptscriptstyle B}^{\scriptscriptstyle TS}$
CH ₄ →CH ₃ +H	Ni ₄ /Al ₂ O ₃	4.85	-0.05	0.04	1.98	2.23
0114 (0115)	$Ni_4/K-Al_2O_3$	4.85	0.14	0.08	2.11	2.42
CH ₄ →CH ₃ +H						

CH ₃ →CH ₂ +H	Ni ₄ /Al ₂ O ₃	5.04	2.40	-0.44	4.11	2.09
3 2	$Ni_4/K-Al_2O_3$	5.04	2.42	-0.08	4.48	2.37
CH ₂ →CH+H	Ni ₄ /Al ₂ O ₃	4.84	4.28	-0.55	6.47	1.74
_	$Ni_4/K-Al_2O_3$	4.84	4.63	-0.56	6.59	1.65
CH→C+H	Ni ₄ /Al ₂ O ₃	3.54	6.64	-1.10	7.41	0.95
	Ni ₄ /K-Al ₂ O ₃	3.54	6.56	-0.62	6.76	1.61

Note: A and B refer to the CH_x and H species.

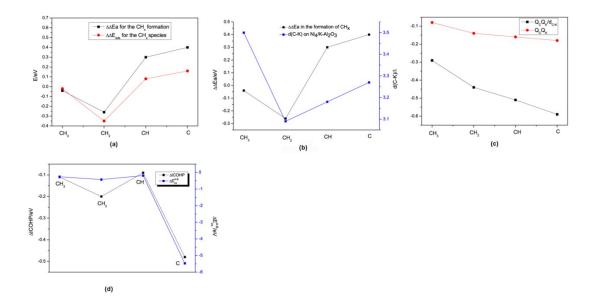


Figure S1. The change of $\Delta\Delta$ Ea for the CH_x species formation and $\Delta\Delta$ Eads for CH_x species with x ranging from 3 to 0 (a); The change of the distance between C and K in CH_x species (d(C-K)) with x ranging from 3 to 0 (b); The Q_CQ_K and $\frac{Q_CQ_K}{d_{C-K}}$ with x ranging from 3 to 0 (c); The Δ ICOHP for

C-Ni interaction on K pre-adsorbed and clean Ni₄/Al₂O₃ and $\Delta E_{\rm int}^{\it A-B}$ with x ranging from 3 to 0

Note: $\Delta\Delta$ Ea refers to the difference between the barriers of the CH_x species formation on K pre-adsorbed and clean Ni₄/Al₂O₃, $\Delta\Delta$ E_{ads} is denoted as the difference between the adsorption energies of the CH_x species on K pre-adsorbed and clean Ni₄/Al₂O₃, Δ ICOHP is the difference between the integrated COHP values of the interaction of C-Ni in CH_x species on K pre-adsorbed and clean Ni₄/Al₂O₃. Δ E^{A-B}_{int} is the difference of the interaction energy between the CH_x species and catalyst on K pre-adsorbed and clean Ni₄/Al₂O₃. Q_C and Q_K is calculated by Bader

S2 The physical origin of Ea in CH_x formation

As is shown in Figure S1(a), the reaction barrier difference of C-H scission yielding CH_x (x=0-3) species between K pre-adsorbed and clean Ni_4/Al_2O_3 ($\Delta\Delta Ea$) various from -0.04 eV, -0.26 eV to 0.30 eV and 0.40 eV. The K effect turns from promotion effect to inhibition effect on the C-H scission forming CH_x . In order to explore the origin of the physical factor of the change, we divided the barrier along the dehydrogenation process. From Table S1, it could be obtained that generally the adsorption energy of CH_x species in TS configuration ($-E_A^{TS}$) is the main factor for the barrier. The adsorption energies of the CH_x species in TS configuration are related to the adsorption energies of the corresponding resulted species as the CH_3 , CH_2 , CH and C species. In addition, Figure S1(a) shows the adsorption energies difference of CH_x between K pre-adsorbed and clean Ni_4/Al_2O_3 ($\Delta\Delta E_{ads}$) will decrease from -0.02 eV in CH_3 species to -0.35 eV in CH_2 species firstly, and then increases to 0.08 and 0.16 eV in CH and C species, respectively. The trend of the adsorption energy of CH_x species is in line with that for the reaction barrier.

In conclusion, we find that the effect of K on the C-H scission forming CH_x changes from the promotion effect to inhibition effect with the dehydrogenation steps going on. Furthermore, the change is supposed to be resulted from the changing effect of K on the adsorption energy of CH_x . As a result, we will further explore the origin of changing effect of K on the CH_x species adsorption properties.

S3 The physical origin of E_{ads} of CH_x species

In order to get the insight of the K effect on the adsorption energy of CH_x species. We dissociate the adsorption energies of CH_x species on clean and K pre-adsorbed Ni_4/Al_2O_3 into the deforming energy items and the interaction energy items corresponding to the interaction between the adsorbate and the catalyst:

$$E_{ads} = (E_A - E_A^g) + (E_B - E_B^g) + E_{int}^{A-B} = E_A^{deform} + E_B^{deform} + E_{int}^{A-B}$$
 (2)

where the first two items E_A^{deform} and E_B^{deform} refer to the deforming energies which are required to deform the geometries of the adsorbate in gas (E_A^g) and the catalyst (E_B^g) before the adsorption process to the geometries of the adsorbate (E_A) and the catalyst (E_B) after the adsorption process. The last item $E_{\rm int}^{A-B}$ corresponds to the binding energy between the deformed adsorbate and catalyst. The interaction item $E_{\rm int}^{A-B}$ is assumed to be dissociated into three components in equation $(3)^{2-4}$:

$$E_{\text{int}}^{A-B} = E_{elstat} + E_{Pauli} + E_{orb} \tag{3}$$

where $E_{\it elstat}$ is the electrostatic interaction energy between the fragments, $E_{\it Pauli}$ represents the repulsion interaction between the fragments and is responsible for any steric repulsion, $E_{\it orb}$ refers to the 2-electron stabilizing interaction between occupied levels of one fragment and empty levels of the other.

Table S2 Energy decomposition of the adsorption energy of CH_x on clean and K preadsorbed Ni₄/Al₂O₃ (unit: eV)

Species		$E_{\scriptscriptstyle A}^{\scriptscriptstyle deform}$	$E_{\scriptscriptstyle B}^{\scriptscriptstyle deform}$	$E_{ m int}^{A-B}$	$\Delta E_{\scriptscriptstyle A}^{\scriptscriptstyle deform}$	ΔE_{B}^{deform}	$\Delta E_{ m int}^{A-B}$
CH ₃	Ni ₄ /Al ₂ O ₃	0.42	0.10	-2.92	0.16	0.08	-0.26

	$Ni_4/K-Al_2O_3$	0.58	0.18	-3.18			
CH ₂	Ni ₄ /Al ₂ O ₃	0.04	0.22	-4.28	0.06	0.02	-0.43
	Ni ₄ /K-Al ₂ O ₃	0.10	0.24	-4.97			
СН	Ni ₄ /Al ₂ O ₃	-0.01	0.58	-6.64	0.01	0.26	-0.19
	$Ni_4/K-Al_2O_3$	-0.00	0.84	-7.40			
C	Ni ₄ /Al ₂ O ₃	0.13	1.34	-9.03	0.00	5.64	-5.47
	$Ni_4/K-Al_2O_3$	0.13	6.97	-14.51			

Note: $E_A^{deform}(E_B^{deform})$ refers to the deforming energy of CH_x (catalyst) which is the energy difference between the energies of the absorbed CH_x species (catalyst) geometry in CH_x -adsorbed catalyst and gas phase; $E_{\rm int}^{A-B}$ refer to the actual interaction energy between deformed CH_x and catalyst geometry; $\Delta E_A^{deform}(\Delta E_B^{deform})$ refer to the energy difference between the deforming energies of the absorbed CH_x species (catalyst) geometry $E_A^{deform}(E_B^{deform})$ on K pre-adsorbed and clean Ni_4/Al_2O_3 , $\Delta E_{\rm int}^{A-B}$ refer to the energy difference of the interaction energies between the absorbed CH_x species and catalyst geometry $E_{\rm int}^{A-B}$ on K pre-adsorbed and clean Ni_4/Al_2O_3 .

From Table S2, on clean Ni_4/Al_2O_3 , it is observed that the deforming energies of the CH_x species E_A^{deform} rang from 0.42 eV in CH_3 , 0.04 eV in CH_2 , -0.01 eV in CH to 0.13 eV in C. On the other hand, the deforming energies of the catalyst E_B^{deform} in the adsorption of CH_x species increases from 0.10 eV (CH_3) , 0.22 eV (CH_2) , 0.58 (CH) to 1.34 eV (C). In addition, the interaction energies for the interaction between the adsorbate CH_x species and catalyst E_{int}^{A-B} on clean Ni_4/Al_2O_3 increases form -2.92 eV (CH_3) , -4.28 eV (CH_2) , -6.64 eV (CH) to -9.03 (C). It is obvious that the difference of the deforming energies of CH_x species E_A^{deform} is little and could be ignored. The deforming energies of the catalyst E_B^{deform} keep increasing trend with the dehydrogenation of the CH_3 species into C. The interaction between the catalyst and

the CH_x E_{int}^{A-B} increases with the dehydrogenation of CH_3 into the C species.

On K pre-adsorbed Ni₄/Al₂O₃, the deforming energies of CH_x species E_A^{deform} is approximate to each other. The deforming energies of catalyst E_B^{deform} increases from 0.18 eV(CH₃), 0.24 eV(CH₂), 0.84 eV(CH) to 6.97 eV (C). On the other hand, the interaction energies for the interaction between CH_x species and catalyst E_{int}^{A-B} increases from -3.18 eV (CH₃), -4.97 eV (CH₂), -7.40 eV (CH) to -14.51 eV (C). The increasing interaction energies for the interaction between catalyst and CH_x species E_{int}^{A-B} could make up the increasing deforming energies of catalyst E_B^{deform} , which leads to the increasing adsorption energy of the CH_x species with the dehydrogenation steps going on.

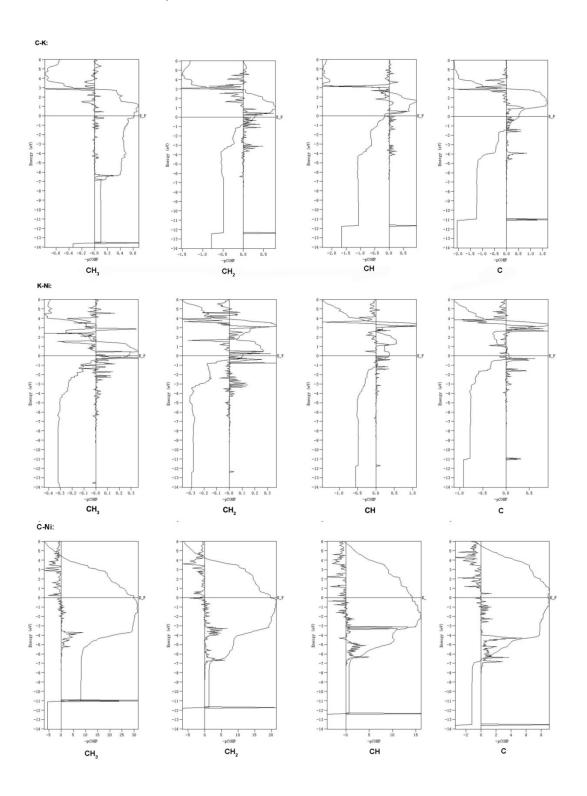
In order to get the change of the deforming energy items and the interaction energy items with the addition of K, we compare the deforming energy items (E_A^{deform} and E_B^{deform}) and the interaction energy item ($E_{\rm int}^{A-B}$) on clean and K pre-adsorbed Ni₄/Al₂O₃. From Table S2, we can observe that the difference of the deforming energies of the CH_x species on clean and K pre-adsorbed Ni₄/Al₂O₃ ΔE_A^{deform} is negligible and should be ignored. For CH₃ and CH₂ species adsorption, the interaction energy for the interaction between the catalyst and CH_x on Ni₄/K-Al₂O₃ is higher than that on clean Ni₄/Al₂O₃ reflected by the negative interaction energy difference for the interaction between the catalyst and CH_x on K pre-adsorbed and clean Ni₄/Al₂O₃ $\Delta E_{\rm int}^{A-B}$. Moreover, the more negative interaction energy difference $\Delta E_{\rm int}^{A-B}$ along the dehydrogenation from CH₃ to CH₂ species contributes to the more negative adsorption energy difference of CH_x species on K pre-adsorbed and clean Ni₄/Al₂O₃. For CH and C species adsorption, the deforming energy of the catalyst E_B^{deform} on K pre-adsorbed

 Ni_4/A_2O_3 is much higher than that on clean Ni_4/Al_2O_3 reflected by the positive deforming energy difference of catalyst on $Ni_4/K-Al_2O_3$ and clean Ni_4/Al_2O_3 ΔE_B^{deform} . The more positive deforming energy difference ΔE_B^{deform} along the dehydrogenation from CH to C species leads to the more positive adsorption energy difference of CH_x species on K pre-adsorbed and clean Ni_4/Al_2O_3 .

In conclusion, the higher interaction between the catalyst and CH_x species on K pre-adsorbed Ni_4/Al_2O_3 E_{int}^{A-B} contributes to the promotion effect of K on the adsorption of CH_3 and CH_2 species. Furthermore, the increasing interaction difference between the catalyst and CH_x species on K pre-adsorbed and clean Ni_4/Al_2O_3 ΔE_{int}^{A-B} leads to the increasing promotion effect of K on the adsorption energies of CH_3 and CH_2 . For the adsorption of CH and C, the higher deforming energy of Ni_4/K - Al_2O_3 E_B^{deform} leads to the inhibition effect of K on the adsorption of CH and C species. And the increasing deforming energy difference of catalyst on K pre-adsorbed and clean Ni_4/Al_2O_3 ΔE_B^{deform} contributes to the increasing inhibition effect of K on the adsorption energies of CH and C species. Hence we will explore the insight of the increasing interaction energy difference between the CH_x species and the catalyst ΔE_B^{A-B} and the increasing deforming energy difference of the catalyst ΔE_B^{deform} in the next part.

S4 The physical origin of $\Delta E_{\rm int}^{A-B}$ of ${\rm CH_x}$ species

In order to get the insight of the interaction energies between the CH_x species and the catalyst E_{int}^{A-B} , we will divide the interaction energies into three parts: E_{elstat} , E_{Pauli} and E_{orb} in equation (3). As the interaction energies between the CH_x species and the


catalyst E_{int}^{A-B} are negative (Table S2), the interaction between the CH_x species and the catalyst is attractive interaction rather than repulsion interaction. As a result, the interaction between CH_x species and the catalyst is mainly determined by E_{elstat} and E_{orb} . For the electrostatic interaction energy between the catalyst and $\mathrm{CH_x}$ (E_{elstat}), as the CH_x species is mainly adsorbed through C with Ni and K, we mainly measure the electrostatic interaction between C and Ni (K). For the electrostatic interaction energy is proportional to $\frac{\mathcal{Q}_C\mathcal{Q}_{Ni(K)}}{d_{C-Ni(K)}}$, we measure the electrostatic interaction energy between the C and Ni (K) through $\frac{Q_C Q_{Ni(K)}}{d_{C-Ni(K)}}$ shown in Figure S1(c). Compared with the electrostatic interaction between C and K, the electrostatic interaction between C and Ni is rather lower and should be ignored. The electrostatic interaction item $\frac{Q_{C}Q_{K}}{d_{C-K}}$ between C and K increases from -0.08 (CH₃), -0.14 (CH₂), -0.16 (CH) to -0.18 (C). The negative value between K and Ni indicates the attractive interaction between K and Ni. The electrostatic interaction between C and K keeps increasing trend along the dehydrogenation. However, the $\Delta E_{\mathrm{int}}^{A-B}$ will turn to decrease from CH₂ to CH

For the orbital overlapping energy E_{orb} , we use the crystal orbital Hamilton populations (COHPs)⁵⁻⁸ to investigate the insight of the K effect on the orbital overlapping energy E_{orb} of CH_x species. The COHP curves of C-K, Ni-K and C-Ni interaction on K pre-adsorbed Ni₄/Al₂O₃ are shown in Figure S2. The Integrated COHP (ICOHP) value could reflect the orbital interaction between two atoms. The

species. The increasing electrostatic interaction E_{elstat} between C and K could hardly

fit the changing trend of $\Delta E_{\rm int}^{A-B}$.

negative value corresponds to the stronger interaction between orbitals. The integrated COHP values for C-K, Ni-K and C-Ni interaction are established in Table S3.

Figure S2. The COHP curves for the interaction between K and C, the interaction between K and Ni, and the interaction between C and Ni in CH₃, CH₂, CH and C species on Ni₄/K-Al₂O₃;

Table S3 Integrated COHPs (eV)

S	Species	C-K	K-Ni	C-Ni	$\Delta E_{ m int}^{A-B}$	ΔΙΟΟΗΡ
CH ₃	Ni ₄ /Al ₂ O ₃	-	-	-1.22	-0.26	-0.11
J	$Ni_4/K-Al_2O_3$	-0.03	-0.04	-1.34		
CH ₂	Ni ₄ /Al ₂ O ₃	-	-	-1.56	-0.43	-0.20
	$Ni_4/K-Al_2O_3$	-0.09	-0.04	-1.75		
СН	Ni ₄ /Al ₂ O ₃	-	-	-1.92	-0.19	-0.09
_	$Ni_4/K-Al_2O_3$	-0.05	-0.08	-2.01		
C	Ni ₄ /Al ₂ O ₃	-	-	-1.82	-5.47	-0.48
	$Ni_4/K-Al_2O_3$	-0.14	-0.08	-2.30		

Note: $\Delta E_{\rm int}^{A-B}$ refer to the energy difference of the interaction energies between the absorbed CH_x species and catalyst geometry on K pre-adsorbed and clean Ni₄/Al₂O₃. The Δ ICOHP is the difference of the ICOHP value for the interaction between C and Ni neighboring K on K pre-adsorbed and clean Ni₄/Al₂O₃.

On K pre-adsorbed Ni₄/Al₂O₃, we find that the ICOHP values of the interaction between C and K are much lower than that for the interaction between C and Ni shown in Table S3. Hence, we will focus on the ICOHP values of the interaction between C and Ni. Furthermore, the ICOHP value of the interaction between C and Ni neighboring K is higher than that for the interaction between C and other Ni atoms. The ICOHP value for the interaction between C and Ni neighboring K majors the orbital interaction between CH_x and the catalyst. We use the difference of the ICOHP values for the interaction between C and Ni neighboring K on K pre-adsorbed and that

for the corresponding C and Ni interaction on clean Ni₄/Al₂O₃ (Δ ICOHP in Table S3) to measure the K effect on the orbital overlapping energies E_{orb} . The values of Δ ICOHP change from -0.11 eV (CH₃), -0.20 eV (CH₂), -0.09 eV (CH) to -0.48 eV (C), the trend of which agrees well with that for the ΔE_{int}^{A-B} shown in Figure S1d.

Based on the above discussion, it is concluded that K will promote the interaction between $\mathrm{CH_x}$ species and catalyst through the E_{elstat} and E_{orb} : the increasing attractive electrostatic interaction between C and K and the increasing overlapping orbitals of C and Ni neighboring K. Furthermore, K will influence the interaction between CH_x and catalyst mainly through enhancing the overlapping of the orbitals of C and Ni, which is different from the electrostatic interaction lying in the K inhibition effect in the previous study⁹. It could be explained: for the increasing electrostatic interaction between C and K (E_{elstat}). K could donate electron to Ni neighboring K. and K will carry positive charge. From Table S4, it is observed that the positive charge of K almost remains +0.85 with the hydrogenation going on. On the other hand, with the hydrogenation steps going on, the C will bind to more Ni atoms and Ni will donate more electrons to C reflected by the more negative charge of C shown in Table S4. Therefore the attractive electrostatic interaction between C and K increases. For the increasing overlapping orbitals of C and Ni neighboring K ($^{E_{\it orb}}$), K could enhance the overlapping the orbitals of the Ni and C through donating more electron to Ni.

Table S4. The charge of atoms (C, K and Ni) on CH_x-adsorbed Ni₄/K-Al₂O₃

calculated by Bader Charge Analysis

Species	C	K	Ni	Ni	Ni
CH ₃	-0.34	+0.85	+0.04	+0.01	-
CH ₂	-0.52	+0.84	-0.07	-0.01	-
СН	-0.62	+0.82	-0.09	+0.02	+0.07
С	-0.69	+0.85	+0.08	-0.04	+0.00

Note: Only the charge of Ni atoms which are binding to CH_x species is calculated.

Table S5 Energy decomposition of $E_{catalyst(Ni_4/K-Al_2O_3)}^{deform}$ on K pre-adsorbed Ni₄/Al₂O₃ (unit: eV)

Species	$E_{catalyst(Ni_4/Al_2O_3)}^{deform}$	$E_{catalyst(Ni_4/{ m K}-Al_2O_3)}^{deform}$	ΔE_K^{deform}	$\Delta E_{Ni_4/Al_2O_3}^{deform}$	$\Delta E_{ m int}^{K-Ni_4/Al_2O_3}$
CH ₃	0.10	0.18	0.00	0.19	0.00
CH ₂	0.22	0.24	-0.04	0.13	0.15
СН	0.57	0.84	0.00	0.91	-0.07
С	1.34	6.97	0.00	0.78	6.20

Note: $E_{catalyst(Ni_4/K-Al_2O_3)}^{deform}$ ($E_{catalyst(Ni_4/Al_2O_3)}^{deform}$) refers to the deforming energy of catalyst Ni₄/K-Al₂O₃ (Ni₄/Al₂O₃); ΔE_K^{deform} and $\Delta E_{Ni_4/Al_2O_3}^{deform}$ refer to the deforming energy of K atom and the Ni₄/Al₂O₃ geometry; $\Delta E_{\rm int}^{K-Ni_4/Al_2O_3}$ refer to the energy difference of the interaction energies between K and Ni₄/Al₂O₃ on the CH_x-absorbed and clean Ni₄/K-Al₂O₃.

(d) The physical origin of ΔE_B^{deform} For the inhibition effect of K on the adsorption energy of CH and C, we find that it is the high deforming energies of catalyst causing the lower adsorption energies of CH and C species at the presence of K. In order to get the insight of the higher deforming energies of K pre-adsorbed Ni₄/Al₂O₃, we divided the deforming energy into the deforming energies of K and Ni₄/Al₂O₃ and the changing interaction energy for the interaction between K and Ni₄/Al₂O₃ in equation (4):

$$\Delta E_{\textit{catalyst}}^{\textit{deform}} = (E_K^{\textit{CHx}} - E_K^{\textit{clean}}) + (E_{Ni_4/Al_2O_3}^{\textit{CHx}} - E_{Ni_4/Al_2O_3}^{\textit{clean}}) + \Delta E_{\text{int}}^{\textit{K}-Ni_4/Al_2O_3} = \Delta E_K^{\textit{deform}} + \Delta E_{Ni_4/Al_2O_3}^{\textit{deform}} + \Delta E_{\text{int}}^{\textit{K}-Ni_4/Al_2O_3}$$

Where E_K^{CHx} and $E_{Ni_4/Al_2O_3}^{CHx}$ refer to the energies of the K geometry and Ni₄/Al₂O₃ geometry on CH_x-adsorbed Ni₄/K-Al₂O₃. E_K^{clean} and $E_{Ni_4/Al_2O_3}^{clean}$ are denoted as the energies of the K geometry and Ni₄/Al₂O₃ geometry on clean Ni₄/K-Al₂O₃. $\Delta E_{\rm int}^{K-Ni_4/Al_2O_3}$ refers to the difference of the interaction energy for the interaction between K and Ni₄/Al₂O₃ on CH_x-adsorbed and clean Ni₄/K-Al₂O₃. The first two items ΔE_K^{deform} and $\Delta E_{Ni_4/Al_2O_3}^{deform}$ refer to the deforming energies of the K and Ni₄/Al₂O₃ geometry on CH_x-adsorbed Ni₄/K-Al₂O₃. The last item $\Delta E_{\rm int}^{K-Ni_4/Al_2O_3}$ represents the changing interaction between Ni₄/Al₂O₃ and K.

As shown in Table S5, the deforming energies of K ΔE_K^{deform} on CH_x-adsorbed Ni₄/K-Al₂O₃ are negligible. However, the deforming energies of Ni₄/Al₂O₃ $\Delta E_{Ni_4/Al_2O_3}^{deform}$ turn to increase significantly in CH-adsorbed Ni₄/K-Al₂O₃. It is the higher deforming energies of Ni₄/Al₂O₃ geometry $\Delta E_{Ni_4/Al_2O_3}^{deform}$ leading to the lower adsorption energy of the CH species. The large deform of Ni₄/Al₂O₃ is caused by the steric hindrance lying in CH, Ni and K. For the C species, the difference of the interaction energy between K and Ni₄/Al₂O₃ $\Delta E_{\text{int}}^{K-Ni_4/Al_2O_3}$ is much higher on C-adsorbed Ni₄/K-Al₂O₃ and is responsible for the inhibition effect of K on C adsorption. For K will interact with Ni₄/Al₂O₃ through the interaction between K and Ni, we will explore the interaction between K and Ni from three aspects: $E_{\it elstat}$, $E_{\it Pauli}$ and $E_{\it orb}$. For the electrostatic interaction energy E_{elstat} between K and Ni_4/Al_2O_3 , it is found that the electrostatic interaction energy between K and Ni is negative and is not responsible for the repulsion interaction between K and Ni. For the overlapping energy E_{orb} , the ICOHP value for the interaction between Ni and K is -0.08 eV on C-adsorbed Ni_4/Al_2O_3 , which indicates that the overlapping energy E_{orb} fails to explain the repulsion interaction between K and Ni₄/Al₂O₃. Hence the repulsion interaction between the K and Ni₄/Al₂O₃ is responsible for the repulsion interaction between K and Ni₄/Al₂O₃.

In conclusion, with the dehydrogenation steps going on, the CH and C species will bind to more Ni atoms, which could compete with the interaction between Ni and K yielding the steric repulsion. It is observed that the steric repulsion in CH(C)-adsorbed Ni₄/K-Al₂O₃ will increase significantly and lead to the deformation of the Ni₄/K-

 Al_2O_3 reflected by larger values of $\Delta E_{Ni_4/Al_2O_3}^{deform}$ on CH(C)-adsorbed Ni_4/K - Al_2O_3 shown in Table S5. The deformation of the Ni₄/K-Al₂O₃ mainly includes the deformation of Ni_4/Al_2O_3 $\Delta E_{Ni_4/Al_2O_3}^{deform}$ and the displacement of K reflected by the interaction between Ni and $K \Delta E_{int}^{K-Ni_4/Al_2O_3}$. On CH-adsorbed Ni₄/K-Al₂O₃, the K will bind to Ni stably, which leads to the deforming of Ni₄ to release the repulsion interaction yielding high deforming energy of Ni_4/Al_2O_3 ($\Delta E_{Ni_4/Al_2O_3}^{deform}$). On C-adsorbed $Ni_4/K-Al_2O_3$, the interaction between C and Ni grows stronger with the hydrogenation going on and turns stronger than that for K and Ni₄/Al₂O₃, which will stabilize the Ni₄/Al₂O₃. The deforming of Ni₄ decreases on C-adsorbed Ni₄/K-Al₂O₃ compared with that on CHadsorbed $Ni_4/K-Al_2O_3$ reflected by the less deforming energy of $Ni_4/Al_2O_3 \Delta E_{Ni_4/Al_2O_3}^{\textit{deform}}$ (0.78 eV versus 0.91 eV for $\Delta E_{Ni_4/Al_2O_3}^{\textit{deform}}$ on C and CH-adsorbed Ni₄/Al₂O₃, respectively). Instead, the repulsion interaction will be released by the displacement of K reflected by the longer distance of K-Ni on C-adsorbed Ni₄/K-Al₂O₃ than that on CH-adsorbed Ni₄/K-Al₂O₃ (3.14 Å and 3.36 Å for d(Ni-K) on CH and C-adsorbed Ni₄/K-Al₂O₃, respectively) which corresponds to the larger repulsion interaction between K and Ni₄ $\Delta E_{int}^{\mathit{K-Ni_4/Al_2O_3}}$.

Table S6 the charge of Ni on Ni₄ on clean and K pre-adsorbed Ni₄/Al₂O₃ shown in Figure 7

catalyst	Ni41	Ni42	Ni43	Ni44
Ni ₄ /Al ₂ O ₃	-0.10	-0.05	-0.10	-0.19

Ni₄/KAl₂O₃ -0.24 -0.25 -0.22 -0.46

References and Notes

- 1. B. Hammer, Surface Science, 2000, **459**, 323-348.
- 2. F. M. Bickelhaupt and E. J. Baerends, *Reviews in Computational Chemistry*, 2000, **15**, 1-86.
- 3. A. Kovács, C. Esterhuysen and G. Frenking, *Chemistry*, 2005, **11**, 1813-1825.
- 4. J. Poater, M. Sola and F. M. Bickelhaupt, *Chemistry*, 2006, **12**, 2889-2895.
- 5. V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, *The Journal of Physical Chemistry. A*, 2011, **115**, 5461-5466.
- 6. S. Maintz, V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, *J Comput Chem*, 2016, **37**, 1030-1035.
- 7. R. Dronskowski and P. E. Bloechl, *J. phys. chem*, 1993, **97**, 8617-8624.
- 8. S. Maintz, V. L. Deringer, A. L. Tchougréeff and R. Dronskowski, *Journal of Computational Chemistry*, 2013, **34**, 2557-2567.
- H. S. Bengaard, I. Alstrup, I. Chorkendorff, S. Ullmann, J. R. Rostrup-Nielsen and J. K.
 Nørskov, *Journal of Catalysis*, 1999, 187, 238-244