Supporting Information

Highly selective transfer hydrogenation of α , β -unsaturated carbonyl compounds using Cu based nanocatalysts[†]

Nazia Siddqui,^a Bipul Sarkar, ^{a,b} Chandrashekar Pendem,^a Rubian Khatun^a, L.N. Sivakumar Konthala, ^a Takehiko Sasaki,^c Ankur Bordoloi ^a and Rajaram Bal^{*a}

^{a.} Refinery Technology Division, CSIR- Indian Institute of Petroleum,

- Dehradun-248005, UK, India, E-mail: raja@iip.res.in
- ^b SKKU Advanced Institute of Nano Technology, Sungkyunkwan University,
- Republic of Korea

c Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan

Figure S1. SEM Images and of fresh Cu-MgO catalyst.

Figure S2. TEM elemental mapping of fresh Cu-MgO.

Figure S3. SEM images and elemental mapping of Cu-MgO used catalyst

Figure S4. k³-weighted Fourier transform of Cu-K edge EXAFS for spent 5% Cu-MgO catalyst. Amplitude: solid curves; imaginary part: dotted curves; observed data: thick curves; fitted data: thin curves.

|--|

Sl No	Substrate	H_2 donor	Catalyst	Χς	Xs
					C-OH
1	O	OH	MgO ^{commercial}	-	HO 100
2	o	ОН	MgO	-	HO
3	o	ОН	CuO ^{commercial}	2.1	100
4	o	ОН	5%Cu-MgO ^{imp}	28.4	100
5	o	ОН	5%Cu-MgO ^{co-pre}	20.9	100
6	o	ОН	5%Cu-MgO	97.2	100
7	o	ОН	5%Cu-MgO ^a	96.7	100
					100

Reaction conditions: 1 g of substrate, 20 ml of cyclohexanol, 0.1 g catalysts, 1 MPa N₂ and 180°C; conversion and product selectivity in mole %; χ_c : hydrogenation of cinnamaldehyde; χ_s : product selectivity.^{*a*} after 4 reuse.

Figure S5. Activity data of consecutive runs with the same catalysts (5%Cu-MgO).

Figure S6. Surface area volcano of Cu-Mgo catalyst with different Cu loading.

Metal Dispersion Calculation

Metal dispersion was calculated using the H₂ chemisorption on Micromeritics, Auto Chem

II 2920. The formula used is

Metal Dispersion = $\frac{S \ M \ N}{100 \ L}$

Where S is a stoichiometric factor of Cu. That means for example in the case of Cu^{2+} and H_2 chemisorption, one molecule of H_2 dissociate to give 2 atoms to be chemisorbed each atom over Cu.

Detail kinetic calculation given below.

$t_{1/2} = 0.03 r^2 / Dp$	((I)
C1/2 0.001 / DP	(¢.

$$t_{1/2} = 0.23r\delta/Df x(C_0/Ce)$$
 (II)

Where

r = Radius of adsorbent in cm

 δ = Thickness of water film adhered to the adsorbent in cm (assume = 0.001cm)

Dp = Pore diffusion coefficient in cm2/s

 $Df = Film \ diffusion \ coefficient \ in \ cm2/s$

 $C_0 = Concentration of metals on adsorbent in mg/gm$

Ce = Concentration of metals in solution at equilibrium in mg/l

 $t_{1/2}$ = time required to bring down the metals concentration to half of initial concentration in seconds.

 $t_{1/2}$ has been calculated from equation no. (III)

$$\Box_{1/2} = -[(0.5)]/\Box_1$$
 (III)

To find out the rate limiting step of the overall adsorption the value of first order rate constant

(K1) obtained from the slopes of the straight lines of first order model. In $(\Box\Box - \Box\Box) = \ln (\Box\Box) - \Box1\Box$ $qt = (C_i - Ct)V/m$

 $q_e = (Ci\text{-}Ce)V/m$

Where Ci and Ce are the initial and equilibrium concentration of cinnamaldehyde, respectively (mg/l), V is the volume of the solution (l), and W is the weight of the catalyst used (g). qe and qt are the amount of cinnamaldehyde adsorbed per gram metal (mg/g) at equilibrium and time t,

K₁ is the slope of graph

Initial concentration of Cinnamaldehyde =1g Density of Cinnamaldehyde = 1.05 gm/mlCyclohexanol = 20mlTotal volume= 20ml Cyclohexanol+ 1ml Cinnamaldehyde So cinnamaldehyde concentration= (1000*1000)/21Ci = 47619 mg/l

t	con	Ct	qt	In(q	e-qt)
3600	6	44761.86	599.999	94 9	9.137769
10200	34	31428.58	3399.98	88 8	8.779558
19000	73	12857.13	7299.99	3 7	7.863266
25200	97	1428.57	9699.9	9 5	5.298316
25200	99	476.19	9899.9	9	#NUM!
28800					

Fig-S7- plot of ln(qe-qt) vs Time.

 $Slop = -2x10^{-4}$

 $K_1 = 2x10^{-4}$

 $\Box_{1/2} = -[\Box\Box(0.5)]/2x10^{-4}$

=3465

 $r = 3 \ Nm$

=3x10⁻⁷cm

 $t_{1/2}\!=\!0.03r^2\!/Dp$

 $Dp = 0.03x (3x10^{-7}cm)^2/3465$

 $Dp = 7.79 \times 10^{-19}$

 $t_{1/2} = 0.23 r \delta / Df \ x(C_0 / Ce)$

Co =Concentration of metals on adsorbent in mg/gm

Ce = Concentration of metals in solution at equilibrium in mg/l

Ce = 476.19

Co = (47619 - 476.19)/(.021/.1)

= 9899.99 mg/gm

 $Df = 0.23 x 3 x 10^{-7} x 0.001 x 9899.99 / (3465 x 476.19)$

$= 4.14 x 10^{\text{-13}} \ Cm^2/s$

Here we concluded that Df value is very small so this reaction is not a control reaction.

Calculation for activation energy is given below,

At different temperature the values of rate constants were calculated (Fig S7), and Arrhenius plot was used for the calculation of activation energy (Fig-S8). The amount of activation energy was around 8.9 kJ/mol.

Fig-S8 Plot of different ln(qe-qt) vs Time

Fig-S9 Arrhenius plot for transfer hydrogenation reaction.

TOF Table -S2

S.No	Catalysts	Reaction condition	H ₂ Source	Selectivity of Unsaturat ed alcohol (%)	TOF (h- ¹)	Ref.	Remark
1	2% Pt/CeO2	50°C,2h,20 MPa	2-propanol	83.5%	7.3	1	Expansive metal used
2	0.75%Pd-WN/SBA- 15	40°C,2h,1. 0 MPa	IPA+10 bar H_2	0.7	757	2	Selectivity of Cinnamyl alcohol is low and Expansive metal used
3	K ₃ PO ₄	80°C,6h,2. 0 MPa	2-Propanol	100	.254	3	TOF is very low
4	Co3O4/MC	120°C,50h, 2.0 MPa	2-Propanol	100	1.179	4	TOF is very low
5	Au/SiC	visible light irradiation at 20°C,130m in.	2-Propanol	100	487	5	Expansive metal used
7	Ag/UiO-66	140°C,6h,5 .0 MPa	H ₂	66	3.3	6	Expansive metal used as well as TOF is less
8	(1:1) Cu(0)–Ni(0)–	80°C,1h,	H ₂	59.6	10.1	7	Selectivity of

	AAPTMS@GO						Cinnamyl
							alcohol is low
							TOF is less
9	PdNP@PPh2-	60°C,2h,2.	H ₂	0	200	8	Selectivity of
	PEGPIILP	0 MPa					Cinnamyl
							alcohol is very
							low Expansive
							metal used
110	Pd ⁰ -AmP-MCF	20°C,0.5h,	H ₂	14	47	9	Selectivity of
		1atm					Cinnamyl
							alcohol is very
							low and
							Expansive metal
							used
11	Ir-NbO _X /SiO ₂	100°C,	H ₂	96	25.1	10	Expensive metal
							used and H_2
							used
12	Ir-MoO _X /SiO ₂	30°C,0.8M	H ₂	90	217	11	Expensive metal
		Ра					used and H_2
							used
13	Ir-ReO _x /SiO ₂	30°C,0.8M	H ₂	95	12600	12	Expensive metal
		Pa.1h					used and H_2
							used
14	Aulr/Tio ₂	100°C,2.0	H ₂	83.4	17.7	13	Expensive metal
		MPa.1h					used and H ₂
							used
15	Pt-Fe/LDH	60°C,2.0	H ₂	51	10.8	14	Expensive metal
		MPa.2h					used and H_2
							used. Selectivity
							of Cinnamyl
							alcohol is less
16	Ni-OA@SiO ₂	60°C, 4.0	H ₂	99	2.8	15	TOF is low
		bar.					
17	This	-	Cyclohexanol	100	13.31		
	work/5%Cu/MgO						

References

- 1. C. M. Piqueras, V. Puccia, D. A. Vega and M. A. Volpe, *Applied Catalysis B: Environmental*, 2016, 185, 265-271.
- 2. D. Wang, Y. Zhu, C. Tian, L. Wang, W. Zhou, Y. Dong, H. Yan and H. Fu, *ChemCatChem*, 2016, 8, 1718-1726.
- 3. R. Radhakrishan, D. M. Do, S. Jaenicke, Y. Sasson and G.-K. Chuah, *ACS Catalysis*, 2011, 1, 1631-1636.
- 4. G. H. Wang, X. Deng, D. Gu, K. Chen, H. Tuysuz, B. Spliethoff, H. J. Bongard, C. Weidenthaler, W. Schmidt and F. Schuth, *Angewandte Chemie*, 2016, 55, 11101-11105.

- 5. C.-H. Hao, X.-N. Guo, Y.-T. Pan, S. Chen, Z.-F. Jiao, H. Yang and X.-Y. Guo, *Journal of the American Chemical Society*, 2016, 138, 9361-9364.
- 6. E. Plessers, D. E. De Vos and M. B. J. Roeffaers, *Journal of Catalysis*, 2016, 340, 136-143.
- 7. S. Rana and S. B. Jonnalagadda, *RSC Adv.*, 2017, 7, 2869-2879.
- 8. S. Doherty, J. G. Knight, T. Backhouse, E. Abood, H. Alshaikh, I. J. S. Fairlamb, R. A. Bourne, T. W. Chamberlain and R. Stones, *Green Chem.*, 2017, 19, 1635-1641.
- 9. A. Nagendiran, V. Pascanu, A. Bermejo Gomez, G. Gonzalez Miera, C. W. Tai, O. Verho, B. Martin-Matute and J. E. Backvall, *Chemistry*, 2016, 22, 7184-7189.
- 10. M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, *ACS Sustainable Chemistry & Engineering*, 2017, 5, 3685-3697.
- 11. M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, *ACS Catalysis*, 2016, 6, 3600-3609.
- 12. M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, *Chemical communications*, 2013, 49, 7034-7036.
- 13. J. Zhao, J. Ni, J. Xu, J. Xu, J. Cen and X. Li, *Catalysis Communications*, 2014, 54, 72-76.
- 14. Z. Tian, Q. Li, J. Hou, Y. Li and S. Ai, *Catalysis Science & Technology*, 2016, 6, 703-707.
- 15. L. Zaramello, B. L. Albuquerque, J. B. Domingos and K. Philippot, *Dalton transactions*, 2017, 46, 5082-5090.