Supplementary Information

Zeolite morphology and catalyst performance: Conversion of methanol to hydrocarbons over offretite

Katarzyna Anna Łukaszuk,^{a,b} Daniel Rojo-Gama,^{a,b} Sigurd Øien-Ødegaard,^a Andrea Lazzarini,^a Gloria Berlier,^c Silvia Bordiga,^c Karl Petter Lillerud,^a Unni Olsbye,^a Pablo Beato,^b Lars Fahl Lundegaard,^{b,*} Stian Svelle^{b,*}

Corresponding authors

^aDepartment of Chemistry, Universityof Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway

- ^b Haldor Topsøe A/S, Haldor Topsøes Allé 1, DK-2800 Lyngby, Denmark
- ^cDepartment of Chemistry, University of Turin, via Quarello 15, I-10135 Turin, Italy

*Corresponding authors:

Stian Svelle: e-mail: stian.svelle@kjemi.uio.no Lars Fahl Lundegaard: e-mail: lafl@topsoe.dk

Table of Contents

1.	N ₂ adsorption-desorption isotherms	2
2.	Material synthesis and characterization (SEM, XRD)	2
3.	Acidity characterization by FT-IT spectroscopy	4
4.	Adsorption isotherms of benzene	5
5.	Predicted and experimental crystal morphology of zeolites with CHA and MOR framework	
topo	ologies	6
6.	SC-XRD analysis	7
7.	Summary of literature data on catalyst testing	.23

1. N₂ adsorption-desorption isotherms

All the N₂ sorption isotherms show a type I isotherm as expected for microporous materials.

Figure 1. N_2 adsorption-desorption isotherms of offretite crystals with different shapes.

2. Material synthesis and characterization (SEM, XRD)

The offretite synthesis procedure described below allows obtaining offtetite crystals (OFF-H-b) with hexagonal morphology (Figure 2) similar to OFF-H crystals. The significant impurities of PHI phase (Figure 3) disqualified the sample for catalytic testing. However, the obtained separated crystals of offretite were suitable of SC-XRD analysis.

The precursor gel had the following batch composition: 4.8 Na₂O: 1.0 K₂O: 1.0Al₂O₃: 15.8 SiO₂: 249.5 H₂O: 1.0TMACI: 15.8 Ethanol. 4.31 g of sodium hydroxide (Sigma Aldrich, 98%) was dissolved in distilled 3.50 g of water, followed by addition of 6.94 g of aluminum isopropoxide (Sigma Aldrich, 98%). The mixture was stirred at 100 °C until dissolution. 7.22 g of distilled water was added before cooling the solution to room temperature. A separate solution was prepared in which 2.15 g of potassium hydroxide (Sigma Aldrich 87%), 2.23 g of

sodium hydroxide (Sigma-Aldrich 98%) was dissolved in 47.07 g of distilled water. 15.80 g of fumed silica (Sigma Aldrich, particle size 0.0014 μ m) was added to this solution under vigorous stirring for 30 minutes. The alumina solution was introduced to the siliceous solution with further stirring for 30 minutes. 15.68 g of distilled water was added to the solution and stirred for 30 minutes. 1.88 g of tetramethylammonium chloride was introduced while stirring for 30 minutes. Finally, 12.14g of ethanol (Sigma Aldrich, 99.8%) was added as the last step of gel preparation. The precursor solution was introduced to Teflon liners which were placed in autoclaves and heated to 190 °C for 5 h. In the next step the autoclaves were submerged in cold water to return them to room temperature. The product was filtered and washed using distilled water and dried overnight at 110 °C.

Figure 2. SEM images showing hexagonal-shaped crystals of OFF-H2

Figure 3. LeBail fit of experimental data of OFF-H-b performed in TOPAS. The orange dots indicate significant impurities of the PHI phase

3. Acidity characterization by FT-IT spectroscopy

Figure 4. DRIFT spectra of CD3CN adsorbed on oval shaped offretite (OFF–O, part A), hexagonal offretite crystals (OFF–H, part B), broccoli–like shaped offretite (OFF–B, part C) and spherical offretite crystals (OFF–S, part D). Black curves represent the maximum.

Figure 4. DRIFT spectra of CD3CN adsorbed on oval shaped offretite (OFF–O, part A), hexagonal offretite crystals (OFF–H, part B), broccoli–like shaped offretite (OFF–B, part C) and spherical offretite crystals (OFF–S, part D). Black curves represent the maximumshows the IR spectra of the samples at the maximum coverage of CD₃CN (θ_{MAX} , black curve) and a selection of spectra collected along the desorption steps at 120 °C, from darkest to brightest grey. The spectra confirm the strong acidity of the samples, since only a fraction of the chemisorbed CD₃CN is removed, despite the fact that both adsorption and desorption steps were performed well above acetonitrile boiling point (80.7 °C). The larger reversibility of the components at 2272 cm⁻¹, accompanied by the faster recovery of the band assigned to OH stretching at 3740 cm⁻¹, allows us to assignee it to the CD3CN adsorbed on external SiOH groups. The more

resistant counterpart at higher frequency (2282 cm⁻¹) can be assigned to CD_3CN chemisorbed on strong Brønsted acid sites, only partially recovered upon the prolonged flux in inert. Finally, the feature centered at 2315 cm⁻¹, also quite resistant at the desorption treatment; can be associated to some extra–framework Al^{3+} Lewis center²⁷.

4. Adsorption isotherms of benzene

Figure 5. Experimental uptake of benzene on offretite with different morphologies at 25°C normalized by mass. The horizontal dashed line indicates total theoretical uptake.

5. Predicted and experimental crystal morphology of zeolites with CHA and MOR framework topologies

Figure 6. The visualization of (a) 3-dimensional 8MR pore system in CHA and (b) 1-dimeniosnal 12MR channels in MOR topology incorporated in simulated (BFDH method) morphology. The corresponding SEM images (on the right hand side) show the experimental crystal shape.

6. SC-XRD analysis

OFF-O crystals correspond to OFF-O-1 and OFF-O-2 labels;

OFF-H-b crystals correspond to OFF-H-b-1 and OFF-H-b2 labels

in the data below

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: OFF-O-1

Bond precision: O-C = 0.0640 AWavelength=3/4 a=13.265(3) Cell: b=13.265(3) c=7.545(2)alpha=90 beta=90 gamma=120 Temperature: 273 K Calculated Reported Volume 1149.8(7) 1149.7(6)Р-6 m 2 P -6 m 2 Space group Hall group P -6 2 P -6 2 Moiety formula 2(018 Si9), C5 O, 12(C), $\kappa_{00.08, C}^{\rm K0.08}$ O3 Si1.5, C0.42 Sum formula C17 K O37 Si18 C0.75 K0.08 O3.52 Si1.50 1340.89 Mr 110.73 Dx,g cm-3 1.936 1.919 Ζ 1 12 Mu (mm-1) 0.802 0.815 669.0 F000 663.0 F000′ 671.29 h,k,lmax 15,15,9 15,15,7 Nref 869[467] 694 Tmin,Tmax 0.494,0.745 Tmin' Correction method= # Reported T Limits: Tmin=0.494 Tmax=0.745 AbsCorr = MULTI-SCAN Data completeness= 1.49/0.80 Theta(max)= 26.883 R(reflections) = 0.0569(553) wR2(reflections) = 0.1626(694) S = 1.144Npar= 77

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🗳 Alert level A

PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.817 Note

Author Response: The diffractometer was single axis (synchrotron), and the crystal was weakly diffracting. Thus, low completeness was obtained.

Alert level C

PLAT041_ALERT_1_C	Calc. and	d Reported	SumFormula	Strin	gs Differ	Please	Check
PLAT043_ALERT_1_C	Calculate	ed and Repo	orted Mol. We	ight Di	ffer by	12.13	Check
PLAT090_ALERT_3_C	2 Poor Data	a / Paramet	er Ratio (Zm	ax > 18)	6.06	Note
PLAT244_ALERT_4_C	Low 'S	Solvent' Ue	eq as Compare	d to Ne	ighbors of	000A	Check
PLAT752_ALERT_4_C	2 Angle (Calc	90.00, Rep	90.00	(1)	Senseless	s.u.
COA	A000- AA	-C00C	1.555	1.555	1.555	# 98 Chec	ck

Alert level G

FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C0.75 K.08 O3.52 Sil.5 Atom count from _chemical_formula_moiety:C1.42 K.08 O3.08 Si1.5 FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C0.75 K.08 03.52 Si1.5 Atom count from the _atom_site data: C1.416666 K.0833333 O3.083333 ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type. CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 12 From the CIF: _chemical_formula_sum C0.75 K0.08 O3.52 Si1.50 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff С 9.00 17.00 -8.00 Κ 0.96 1.00 -0.04 42.24 37.00 5.24 0 18.00 18.00 0.00 Si PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 3 Report PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info PLAT012_ALERT_1_G No __shelx_res_checksum found in CIF Please Check PLAT040_ALERT_1_G No H-atoms in this Carbon Containing Compound ... Please Check PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 0.08 Check PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 1 Report 273 Check PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 273 Check PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for 0004 170.9 Degree PLAT432_ALERT_2_G Short Inter X...Y Contact Si02 PLAT432_ALERT_2_G Short Inter X...Y Contact Si02 3.57 Ang. .. C2 . . 3.57 Ang. .. C2 C2 2.82 Ang. PLAT432_ALERT_2_G Short Inter X...Y Contact 0007 .. PLAT432_ALERT_2_G Short Inter X...Y Contact C1 .. C2 2.06 Ang. . .

PLAT432_ALERT_2_G S	hort Inter X.	Y Contact	C1		C2	• •	2.06	Ang.
PLAT432_ALERT_2_G S	hort Inter X.	Y Contact	C00B		C2		3.11	Ang.
PLAT432_ALERT_2_G S	hort Inter X.	Y Contact	C00B	••	C2		3.11	Ang.
PLAT432_ALERT_2_G S	hort Inter X.	Y Contact	C00B	••	C2		3.11	Ang.
PLAT432_ALERT_2_G S	hort Inter X.	Y Contact	C00B		C2		3.11	Ang.
PLAT720_ALERT_4_G N	umber of Unus	sual/Non-Sta	ndard Lab	oels			13	Note
PLAT860_ALERT_3_G N	umber of Leas	st-Squares R	estraints	5			18	Note
PLAT870_ALERT_4_G A	LERTS Related	d to Twinnin	g Effects	s Sup	pressed		!	Info
PLAT952_ALERT_5_G C	alculated (Th	hMax) and CI	F-Reporte	ed Ln	nax Diffe	er	2	Units
PLAT984_ALERT_1_G T	'he K-f'=	0.227 Devi	ates from	n the	e B&C-Val	lue	0.217	Check

1 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 29 ALERT level G = General information/check it is not something unexpected 13 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: OFF-O-2

Bond precision: O-C = 0.0580 AWavelength=3/4 a=13.2558(3) Cell: b=13.2558(3) c=7.5358(2)alpha=90 beta=90 gamma=120 Temperature: 273 K Calculated Reported Volume 1146.76(7)1146.76(6) P -6 m 2 P-6 m 2 Space group P-62 Hall group P -6 2 2(018 Si9), C5 O, 3(O), K1 O36 Si18, 2(C2.5 O0.5), Moiety formula 9(C), K 9(C), 3(O)Sum formula C14 K O40 Si18 C14 K O40 Si18 Mr 1352.86 1352.86 Dx,g cm-3 1.959 1.959 Ζ 1 1 Mu (mm-1) 0.810 0.817 675.0 675.0 F000 F000′ 677.32 h,k,lmax 18,18,10 18,18,9 Nref 1245[664] 1065 Tmin,Tmax 0.650,0.746 Tmin' Correction method= # Reported T Limits: Tmin=0.650 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.60/0.86 Theta(max)= 30.891 R(reflections) = 0.0431(1009) wR2(reflections) = 0.1322(1065) S = 1.112Npar= 77

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

🎈 Alert level B

PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?) 01 Check

Author Response: Residual disordered electron density in the pores was modelled using dummy O and C atoms.

Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.

not performed for entb radiation type.		
PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension	1	Info
PLAT012_ALERT_1_G Noshelx_res_checksum found in CIF	Please	Check
PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0	0.973	Report
PLAT040_ALERT_1_G No H-atoms in this Carbon Containing Compound	Please	Check
PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ	Please	Check
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)	273	Check
PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperature (K)	273	Check
PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for 0005	171.0	Degree
PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for 0007	139.5	Degree
PLAT432_ALERT_2_G Short Inter XY Contact Si03 C2	3.52	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact Si03 C2	3.52	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact 0009 C2	2.77	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact C2 C3	2.12	Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	11	Note
PLAT792_ALERT_1_G The Model has Chirality at Si03 (Polar SPGR)	S	Verify
PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed	!	Info
PLAT984_ALERT_1_G The K-f'= 0.227 Deviates from the B&C-Value	0.217	Check

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
18 ALERT level G = General information/check it is not something unexpected
9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
7 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
5 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: OFF-H-b-1

Bond precision: O-C = 0.0300 AWavelength=3/4 Cell: a=13.2511(3) b=13.2511(3) c=7.5361(2)alpha=90 beta=90 gamma=120 Temperature: 273 K Calculated Reported Volume 1145.99(7)1145.99(6) P -6 m 2 P-6 m 2 Space group P-62 Hall group P -6 2 2(018 Si9), C5 O, 3(O), K1 O36 Si18, 2(C2.5 O0.5), Moiety formula 9(C), K 3(0), 9(C)Sum formula C14 K O40 Si18 C14 K 040 Si18 1352.91 Mr 1352.86 Dx,g cm-3 1.960 1.960 Ζ 1 1 Mu (mm-1) 0.811 0.817 675.0 675.0 F000 F000′ 677.32 h,k,lmax 17,17,10 17,17,10 Nref 1194[637] 1185 Tmin,Tmax 0.654,0.746 Tmin' Correction method= # Reported T Limits: Tmin=0.654 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.86/0.99 Theta(max)= 30.404 R(reflections) = 0.0465(1038) wR2(reflections) = 0.1405(1185) S = 1.058Npar= 77

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
🞈 Alert level B
CHEMW03_ALERT_2_B WARNING: The ratio of given/expected molecular weight as
            calculated from the _atom_site* data lies outside
           the range 0.95 <> 1.05
           From the CIF: _cell_formula_units_Z
From the CIF: _chemical_formula_weight
                                                                  1
                                                           1352.91
           TEST: Calculate formula weight from _atom_site_*
           atom
                   mass
                           num
                                   sum
          С
                   12.01
                           17.00 204.20
          Κ
                   39.10 1.00 39.10
                   16.00 43.00 687.98
           0
                   28.09 18.00 505.57
           Si
           Calculated formula weight
                                                 1436.85
PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?) .....
                                                                       000B Check
```

Author Response: Residual disordered electron density in the pores was modelled using dummy O and C atoms.

Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of 000A Check PLAT752_ALERT_4_C Angle Calc 90.00, Rep 90.00 Senseless s.u. C4-000A -C1 1.555 1.555 1.555 # 96 Check Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C14 K1 O40 Si18 Atom count from the _atom_site data: C17. K1. 043.00172 Si18. ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type. CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 1 From the CIF: _chemical_formula_sum C14 K O40 Si18 TEST: Compare cell contents of formula and atom_site data Z*formula cif sites diff atom 14.00 17.00 -3.00 С 0.00 1.00 1.00 Κ -3.00 40.00 43.00 0 0.00 Si 18.00 18.00 PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 1 Info l Info Please Check Please Check PLAT012_ALERT_1_G No __shelx_res_checksum found in CIF PLAT040_ALERT_1_G No H-atoms in this Carbon Containing Compound ... PLAT042_ALERT_1_G Calc. and Reported MoietyFormula Strings Differ Please Check PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large 0.10 Report PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 273 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 273 Check PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for 0005 171.2 Degree PLAT396_ALERT_2_G Deviating Si-O-Si Angle from 150 Deg for 0006 140.0 Degree

```
PLAT432_ALERT_2_G Short Inter X...Y Contact Si03 .. C3
                                                                  3.53 Ang.
                                                      ..
PLAT432_ALERT_2_G Short Inter X...Y Contact Si03 .. C3
                                                                  3.53 Ang.
                                                         ..
PLAT432_ALERT_2_G Short Inter X...Y Contact 0008 .. C3
                                                                  2.78 Ang.
                                                         ..
                                              .. C2
PLAT432_ALERT_2_G Short Inter X...Y Contact C2
                                                                 0.01 Ang.
                                                          ..
                                              .. C3
PLAT432_ALERT_2_G Short Inter X...Y Contact C2
                                                                 2.09 Ang.
                                                          ..
PLAT432_ALERT_2_G Short Inter X...Y Contact C2 .. C3
                                                                 2.09 Ang.
                                                         ..
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .....
                                                                  11 Note
PLAT870_ALERT_4_G ALERTS Related to Twinning Effects Suppressed ..
                                                                   ! Info
PLAT933_ALERT_2_G Number of OMIT Records in Embedded .res File ...
                                                                    2 Note
PLAT984 ALERT 1 G The K-f'= 0.227 Deviates from the B&C-Value
                                                                0.217 Check
```

0 ALERT level A = Most likely a serious problem - resolve or explain 2 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 23 ALERT level G = General information/check it is not something unexpected 9 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 13 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: OFF-H-b-2

Bond precision: O-C = 0.0260 AWavelength=0.71073 Cell: a=13.2269(16) b=13.2269(16) c=7.5381(10) alpha=90 beta=90 gamma=120 Temperature: 273 K Calculated Reported Volume 1142.1(4)1142.1(3)Р-6 m 2 P -6 m 2 Space group P-62 Hall group P-62 2(018 Si9), C5 O, 3(O), K1 O36 Si18, 2(C2.5 O0.5), Moiety formula 9(C), K 3(0), 9(C)Sum formula C14 K O40 Si18 C14 K O40 Si18 Mr 1352.86 1352.86 Dx,g cm-3 1.967 1.967 Ζ 1 1 Mu (mm-1) 0.708 0.708 675.0 F000 675.0 F000′ 677.06 h,k,lmax 17,17,10 17,17,10 Nref 1196[638] 1180 Tmin,Tmax 0.996,0.996 0.609,0.746 Tmin′ 0.993 Correction method= # Reported T Limits: Tmin=0.609 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.85/0.99 Theta(max)= 28.711 R(reflections) = 0.0358(1156) wR2(reflections) = 0.1050(1180) S = 1.166Npar= 77

Click on the hyperlinks for more details of the test.

🞈 Alert level B

PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?) 000B Check

Author Response: Residual disordered electron density in the pores was modelled using dummy O and C atoms.

🤪 Alert level C

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density 2.06 Report PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of 000A Check PLAT752_ALERT_4_C Angle Calc 90.00, Rep 90.00(2) Senseless s.u. C1 -000A -C00C 1.555 1.555 1.555 # 99 Check

Alert level G

PLAT004_ALERT_5_G Polymeric Structure Found wi	th Maximum Dimension 1	Info
PLAT012_ALERT_1_G Noshelx_res_checksum f	ound in CIF Please	Check
PLAT019_ALERT_1_G _diffrn_measured_fraction_th	eta_full/*_max < 1.0 0.996	Report
PLAT040_ALERT_1_G No H-atoms in this Carbon Co	ntaining Compound Please	Check
PLAT042_ALERT_1_G Calc. and Reported MoietyFor	mula Strings Differ Please	Check
PLAT199_ALERT_1_G Reported _cell_measurement_t	emperature (K) 273	Check
PLAT200_ALERT_1_G Reporteddiffrn_ambient_t	emperature (K) 273	Check
PLAT396_ALERT_2_G Deviating Si-O-Si Angle from	150 Deg for 0005 139.7	Degree
PLAT396_ALERT_2_G Deviating Si-O-Si Angle from	150 Deg for 0006 171.3	Degree
PLAT432_ALERT_2_G Short Inter XY Contact S	i03 C2 3.53	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact S	i03 C2 3.53	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact C	009 C2 2.78	Ang.
PLAT432_ALERT_2_G Short Inter XY Contact C	2 COAA 2.15	Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standa	rd Labels 13	Note
PLAT870_ALERT_4_G ALERTS Related to Twinning E	ffects Suppressed !	Info

```
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
15 ALERT level G = General information/check it is not something unexpected
6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
8 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

7. Summary of literature data on catalyst testing

Table S.1. Summary of literature dat	a on catalyst testing. Reference	e numbering refers to the n	umbering used in the mai	n manuscript.
····························			0	

Catalyst	Conditions	Products	Lifetime	Acidity	Morphology	Ref.
H-Offretite	T = 377 °C.	No information provided.	Ca. 1 h.	Si/Al = 4 in catalyst.	No information provided.	6
	WHSV = $10 h^{-1}$.		Maximum initial			
			conversion was 80 %			
H-Offretite (prepared with TMA).	T = 244 °C (and lower). WHSV = 1.5 h ⁻¹ .	Mostly DME formation. Only C_1 - C_3 reported.	Ca. 3 h at 244 °C. Maximum 15 % conversion to hydrocarbons	Si/Al = 4.5 in synthesis gel.	No direct information provided. Literature reference indicates	7
			reached.		oval agglomerates, about 0.3 x 1.5 μm in size, AR=5	
Zeolite T (OFF – ERI intergrowth; inorganic synthesis)	T = 300 or 400 °C Residence time = $2.5 g_{cat} s \text{ cm}^{-3}$	Rich in C_2 - C_4 aliphatics (71.9 wt% at 400 °C) Low selectivity to branched products. Minor amounts of aromatics.	Ca. 8 h at 400 °C. Maximum 90 % conversion to hydrocarbons reached.	Si/Al = 3.3 in catalyst.	No direct information provided. Literature reference indicates rod-shaped, 3-4 × 0.5-0.6 μm.	8
Zeolite T (OFF – ERI intergrowth)	T = 400 °C. WHSV = 1 h ⁻¹ .	Ethene and propene (max 75 wt%) and C_1 - C_4 alkanes.	Ranging from ca. 4 h (43 % cation exchange) to 1.5 h (58 % cation	Si/Al = 3.4 in parent material. Degree of cation exchange ranging from 43 to 84 %.	No information provided.	9

			exchange, amorphous material	Characterization with FT-IR.		
			present).			
H-Offretite	Reaction carried	For H-OFF, a range of	No information	Same catalysts as in refs	. 11 and 12.	10
(prepared with	out in sealed NMR	aliphatic hydrocarbon	provided.			
TMA, small ERI	rotor and	products and also long-				
content present).	sequential heating	chain hydrocarbons				
	to 150 – 300 °C for	trapped inside the				
	10 min at each T.	structure.				
Series of OFF-ERI	T = 425 °C.	TMA-offretite: Sum of	Initial conversion ca.	TMA-offretite: Si/AI = 3.9 from	TMA-offretite:	11,12
intergrowths with		methane, ethene, and	100 % for all	elemental analysis; 5.3 from Si	Irregular, ca.	
decreasing content	LHSV = 0.5 (no	propene is maximum 67.4	catalysts.	NMR after ion ex. and	0.2-0.5 × 0.5-1	
of ERI prepared	units provided).	C%. C ₅ is 1.8 C%		treatment at 600 °C.	μm.	
with various SDAs.			Lifetime ranges from			
		BTMA-offretite: Sum of	2 to 4 h (estimated	BTMA-offretite: Si/Al = 5.8	BTMA-offretite:	
TMA-offretite, CC-		methane, ethene, and	from Figure 5 in ref.	from elemental analysis; 9.2	Micron sized	
offretite, and		propene is maximum 53.1	11).	from Si NMR after ion ex. and	hexagonal rods	
BTMA-offretite		C%. C₅ is 0.7 C%	,	treatment at 600 °C.	(scale in SFM	
have the lowest					image hard to	
number of channel		CC-offretite: Sum of		CC-offretite: $Si/Al = 4.1$ from	discern).	
blockings due to		methane, ethene, and		elemental analysis: 4.0 from Si		
FRI intergrowths		propene is maximum 58.2		NMR after ion ex. and	CC-offretite:	
		C%. C₅ is 2.0 C%		treatment at 500 °C.	Micron sized	
					rods. ca. 1 × 5-	
					10 μm.	