Electronic Supplementary Information for the manuscript entitled

Na-promoted Ni/ZrO₂ dry reforming catalyst with high efficiency: details of Na₂O-ZrO₂-Ni interaction controlling activity and coke formation

by

M. Németh,^a D. Srankó,^a J. Károlyi,^a F. Somodi,^a Z. Schay,^a G. Sáfrán,^b I. Sajó,^c and A. Horváth^{*a}

^{a.} Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege M. street 29-33, H-1121 Budapest, Hungary.

^{b.}Institute for Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. street 29-33, H-1121 Budapest, Hungary.

^{c.} University of Pécs, Szentágothai Research Centre, Ifjúság street 20, H-7624 Pécs, Hungary.

*corresponding author, email: horvath.anita@energia.mta.hu

Figure S1 Schematic diagram of the closed loop circulation system used in ¹³CO₂-labeled dry reforming experiments at sub-atmospheric pressure

Figure S2 XRD spectra of Ni/ZrO₂ and Na-Ni/ZrO₂ after TPR. The arrow signals the minor tetragonal ZrO_2 phase.

Figure S3 XPS results. C 1s spectrum on Na-Ni/ZrO₂ a) after calcination at 600 °C and b) subsequent reduction at 600 °C; and Na 1s spectrum on Na-Ni/ZrO₂ c) after calcination at 600 °C and d) subsequent reduction at 600 °C. The Ni 2p region after calcination at 600 °C on e) Ni/ZrO₂ and f) Na-Ni/ZrO₂; and after reduction at 600 °C on g) Ni/ZrO₂ and h) Na-Ni/ZrO₂. Measured data – upper curves, fitted spectra – lower curves

Figure S4 DRIFTS spectra in 1%CO/He stream at room temperature on A) Ni/ZrO₂ sample and B) Na-Ni/ZrO₂. Spectra are corrected with the one before CO chemisorption.

Figure S5 TEM images taken after long term stability tests on a) Ni/ZrO₂ and b) Na-Ni/ZrO₂.

Figure S6 HRTEM image of a single Ni particle decorated by Ni(OH)₂/NiOOH domains after the ramp-hod experiments with 13 CO₂

Figure S7 Isothermal type dry reforming reaction with ${}^{13}CO_2$: ${}^{12}CH_4=1$ mixture in the closed loop circulation system on a) Ni/ZrO₂; b) Na-Ni/ZrO₂; c) enlargement of low intensity signals of spectrum "a" and d) enlargement of low intensity signals of spectrum "b". Conditions: introduction of a mixture of ~ 25 mbar of each reactant (${}^{12}CH_4$ contains 2% Ar) onto the catalyst at 600 °C, then 30 min hold at 600 °C.