Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary information

Conversion of *n*-butane and product selectivity was calculated from mole fraction of products in outflow as below :

Conversion of
$$n$$
 – butane (%) = $\frac{([C_4H_{10}]_{in} - [C_4H_{10}]_{out})}{[C_4H_{10}]_{in}} \times 100$
(1)

$$Conversion of oxidant (\%) = \frac{([oxidant]_{in} - [oxidant]_{out})}{[oxidant]_{in}} \times 100$$

(2)

 $Selectivity (\%) = \frac{moles \ of \ the \ product}{total \ moles \ of \ the \ product} \times 100$ (3)

1. Mass and Heat Transfer Calculations for n-butane oxidation over Ni-Mo/Al₂O₃ catalyst

Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971)

n-butane activation over oxygen:

If
$$\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} < 0.15$$
, then external mass transfer effects can be neglected.

 $-r_A'$ = reaction rate, kmol/kg-cat · s = 4.98 x 10⁻⁵ kmol-C₃/kg-cat . s

n = reaction order = 2

R = catalyst particle radius, m=3 x 10^{-5} m

 ρ_b = bulk density of catalyst bed, kg/m³

=(1- ϕ) (ϕ = porosity or void fraction of packed bed)= 1024 kg/m³

 ρ_c = solid catalyst density, kg/m³= 1.28 m/s

 C_{Ab} = bulk gas concentration of A, kmol/m³ = 0.0075 kmol/m³

 k_c = mass transfer coefficient, m/s = 1.28 m/s

$$\frac{-r_A' \rho_b Rn}{k_c C_{Ab}} = 3.12 \text{ x } 10^{-4} < 0.15 \text{ {Mears for External Diffusion}}$$

Similarly, for $CO_2 = 2.85 \times 10^{-4}$ and for $N_2O = 1.72 \times 10^{-4}$

2. Weisz-Prater Criterion for Internal Diffusion (Fogler, p839)

If $C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} < 1$, then internal mass transfer effects can be neglected.

 $-r'_{A(obs)}$ = observed reaction rate, kmol/kg-cat \cdot s = 5.05 x 10⁻⁵ kmol-C₃/kg-cat . s

R = catalyst particle radius, m =3 x 10^{-5} m

$$\rho_c$$
 = solid catalyst density, kg/m³ = 3600 kg/m³

 $D_e = effective gas-phase diffusivity, m^2/s$ [Fogler, p815]

$$= \frac{D_{AB}\phi_p\sigma_c}{\tau} \text{ where }$$

 D_{AB} = gas-phase diffusivity m²/s; ϕ_p = pellet porosity; σ_c = constriction factor; τ =tortuosity.

 C_{As} = gas concentration of A at the catalyst surface, kmol-A/m³ = 0.0041 kmol-C3/m³

$$C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_e C_{As}} = 4.9 \text{ x } 10^{-4} < 1 \text{ {Weisz-Prater Criterion for Internal Diffusion}}$$

Similarly, for $CO_2 = 4.07 \times 10^{-4}$ and for $N_2O = 2.28 \times 10^{-4}$

3. Mears Criterion for Combined Interphase and Intraparticle Heat and Mass Transport (Mears, 1971)

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} < \frac{1+0.33\gamma\chi}{|n-\gamma_{b}\beta_{b}|(1+0.33n\omega)}$$

$$\gamma = \frac{E}{R_{g}T_{s}}; \ \gamma_{b} = \frac{E}{R_{g}T_{b}}; \ \beta_{b} = \frac{(-\Delta H_{r})D_{e}C_{Ab}}{\lambda T_{b}}; \ \chi = \frac{(-\Delta H_{r})-r'_{A}R}{h_{t}T_{b}}; \ \omega = \frac{-r'_{A}R}{k_{c}C_{Ab}}$$

 γ = Arrhenius number; β_b = heat generation function;

 λ = catalyst thermal conductivity, W/m.K;

 χ = Damköhler number for interphase heat transport

 ω = Damköhler number for interphase mass transport

$$\frac{-r'_{A}R^{2}}{C_{Ab}D_{e}} = 3.11 \text{ x10}^{-5} < 3 \{\text{Mears Criterion for Interphase and Intraparticle Heat and} \}$$

Mass Transport } Similarly, for $CO_2 = 2.15 \ x \ 10^{-5}$ and for $N_2O = 1.72 \ x \ 10^{-5}$

Table S1: The effect of metal oxide, support and promoter on the *n*-butane oxidative activation

Catalyst	<i>n</i> -butane conversion	Oxidant	Temperature	TOF (s ⁻¹)	Reference
	(mol %)				
7 % V ₂ O ₅ /SiO ₂	1.2	Air	230	0.4 x 10 ⁻⁵	[1, 2]
17.5 %	7.2	Air	230	0.9×10^{-5}	[1 2]
V_2O_5/Al_2O_3	1.2		230	0.7 X 10	[1, 2]
6 % V ₂ O ₅ /Nb ₂ O ₅	17.3	Air	230	3.6 x 10 ⁻⁵	[1, 2]
4 % V ₂ O ₅ /ZrO ₂	16.0	Air	230	4.5 x 10 ⁻⁵	[1]
3 % V ₂ O ₅ /CeO ₂	10.6	Air	230	6.3 x 10 ⁻⁵	[1]
5 % V ₂ O ₅ /TiO ₂	27.8	Air	230	19.6 x 10 ⁻⁵	[1]
1 % V ₂ O ₅ / 5 %	12.1	Air	230	27.0 x 10 ⁻⁵	[1]
P_2O_5/TiO_2	12.1		250	27.0 X 10	
6 % WO ₃ / 1 %	23.6	Air	230	34.1 x 10 ⁻⁵	[1]
V ₂ O ₅ /TiO ₂	23.0		230	51.1 X 10	
γ-Bi ₂ MoO ₆	30.2	Air+steam	420	43.6 x 10 ⁻⁴	[3]
β-Bi ₂ Mo ₂ O ₉	39.8	Air+steam	320	57.8 x 10 ⁻⁴	[3]
BiMoZr _x oxide	42.3	Air	440	6.11 x 10 ⁻⁴	[4]
BiMoFe _x oxide	68.6	Air	420	9.23 x 10 ⁻⁴	[5]
ZrFe _{2-x} Al _x O ₄	55.1	Air	420	7.96 x 10 ⁻⁴	[6]
ZnFe ₂ O ₄	41.3	Air	420	5.97 x 10 ⁻⁴	[3, 7]
TiP ₂ O ₇ -M1	24.0	CO ₂	530	3.47 x 10 ⁻⁴	[8]
TiP ₂ O ₇ -M2	22.3	CO ₂	530	3.22 x 10 ⁻⁴	[8]
1.2 % Cr 2.8 %	10.2	CO ₂	550	1.47 x 10 ⁻⁴	[9]

V/MCM-41					
1.2 % Cr 2.8 %	8.3	CO2	550	1.20 x 10 ⁻⁴	[9]
V/ZSM-5		2			L^ J
1.2 % Cr 2.8 %	7 2	CO2	550	1 04 x 10 ⁻⁴	[9]
V/ MCM-22	, . <u> </u>			1.011110	[2]
1.2 % Cr 2.8 %					
V/ZSM-	6.1	CO_2	550	8.81 x 10 ⁻⁵	[9]
5(Mesoporus)					

XPS analysis of fresh reduced and reoxidised catalyst:

Figure S1: X-ray photoelectron spectra (Mo 3d - S 2s region) of NiMo/Al₂O₃ catalysts Reduced and and reoxidised samples are included for comparison

4. Kinetics of reduction and oxidation:

The kinetics of reduction and oxidation was calculated using Autochem 2920 Chemisorption analyser. A series of reduction (TPR) and oxidation (TPO) experiments (as explained in Experimental section) were done at different heating rates namely 2 °C/min, 5 °C/min, 7 °C/min, 10 °C/min, 14 °C/min and 20 °C/min. The data are plotted and the slope determined to calculate the rate, activation energy for reduction and oxidation [10].

Figure S2: First order kinetics of reduction experiments of Ni-Mo/Al₂O₃ catalyst

Figure S3: Arrhenius relationship profile of reduction (with H₂) of Ni-Mo/Al₂O₃ catalyst

Figure S4: Arrhenius relationship profile of oxidation (with O_2) of Ni-Mo/Al₂O₃ catalyst

Figure S5: Arrhenius relationship profile of *n*-butane activation over different oxidants

References

 [1] I.E. Wachs, J.-M. Jehng, G. Deo, B.M. Weckhuysen, V.V. Guliants, J.B. Benziger, S. Sundaresan, Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships, J. Catal., 170 (1997) 75-88.

[2] I.E. Wachs, J.-M. Jehng, G. Deo, B.M. Weckhuysen, V.V. Guliants, J.B. Benziger, In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions, Catal. Today, 32 (1996) 47-55.

[3] J.C. Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, Effect of pH in the preparation of γ-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene: Correlation between catalytic performance and oxygen mobility of γ-Bi2MoO6, Catal. Commun., 8 (2007) 625-628.

[4] R. Grasselli, Fundamental Principles of Selective Heterogeneous Oxidation Catalysis, Top. Catal., 21 (2002) 79-88.

[5] J.-H. Park, C.-H. Shin, Oxidative dehydrogenation of butenes to butadiene over Bi–Fe–Me(Me = Ni, Co, Zn, Mn and Cu)–Mo oxide catalysts, J Ind. Eng. Chem., 21 (2015) 683-688.

[6] J.A. Toledo, P. Bosch, M.A. Valenzuela, A. Montoya, N. Nava, Oxidative dehydrogenation of 1butene over Zn I ferrites, J. Mol. Catal. A: Chem., 125 (1997) 53-62.

[7] Y.-M. Chung, Y.-T. Kwon, T.J. Kim, S.J. Lee, S.-H. Oh, Prevention of Catalyst Deactivation in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene over Zn-Ferrite Catalysts, Catal. Lett., 131 (2009) 579-586.

[8] I.-C. Marcu, I. Sandulescu, J.-M.M. Millet, Oxidehydrogenation of n-butane over tetravalent metal phosphates based catalysts, Appl. Catal., A,, 227 (2002) 309-320.

[9] B.R. Jermy, B.P. Ajayi, B.A. Abussaud, S. Asaoka, S. Al-Khattaf, Oxidative dehydrogenation of nbutane to butadiene over Bi–Ni–O/γ-alumina catalyst, J. Mol. Catal. A: Chem., 400 (2015) 121-131. [10] A. Gervasini, Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods, in: A. Auroux (Ed.) Calorimetry and Thermal Methods in Catalysis, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 175-195.