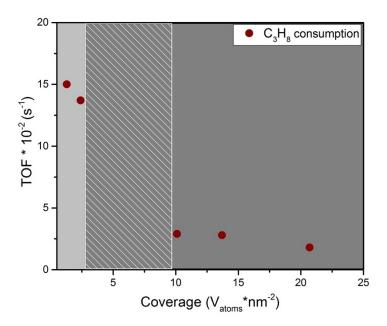
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

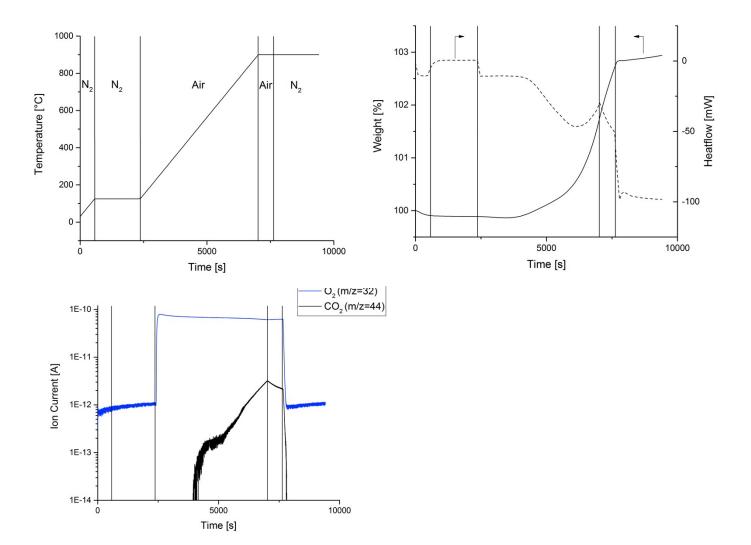
<u>Support Information:</u> Supported two- and three-dimensional vanadium oxide species on the surface of $\beta\text{-SiC}$

Carlos A. Carrero,^a Samuel P. Burt,^c Fangying Huang,^b Juan M. Venegas,^c Alyssa M. Love,^b Philipp Mueller,^b Hao Zhu,^b Joseph T. Grant,^b Ricardo Mathison,^c Michael Hanrahan,^d Aaron Rossini,^d Madelyn Ball,^c James Dumesic,^c and Ive Hermans^{b,c*}

S.1) Set of data to accurately measure:

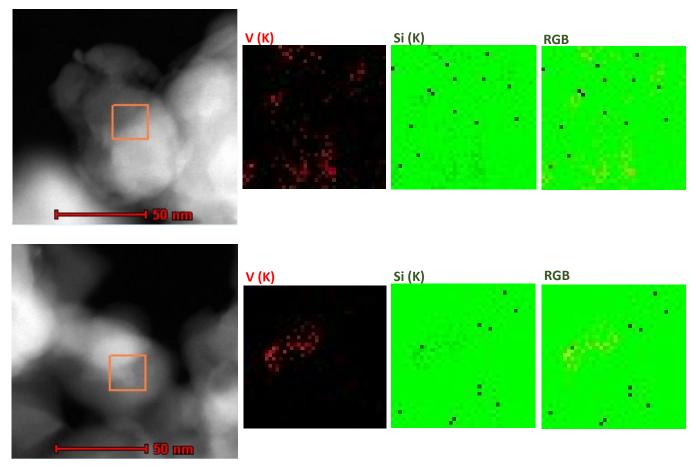

BET surface area (m²/g)

Sample	BET-I	BET-II	BET-III	Average	STDEV
β-SiC _p	32.1	28.3	29.4	29.9	1.6
2V/β-SiC _p	25.6	28.5	25.8	26.6	1.3
β-SiC _o	29.3	29.5	29	29.3	0.2
1V/β-SiC _o	27.1	26.6	26.2	26.6	0.4
2V/β-SiC _o	24.6	26.3	26.8	25.9	0.9
4V/β-SiC _o	14.9	12.4	15.8	14.4	1.4
6V/β-SiC _o	14.2	14.7	13.7	14.2	0.4
8V/β-SiC _o	13.5	11.8	12.9	12.7	0.7
10V/β-SiC _o	12.1	10.4	11.9	11.5	0.8

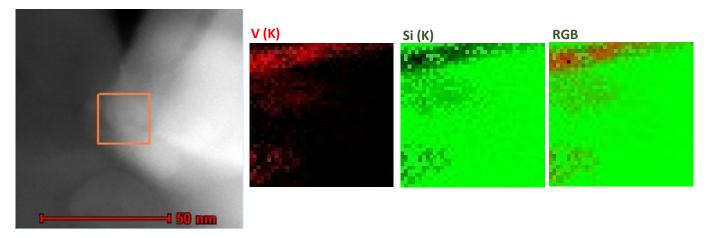

V loading (w.t. %)

Sample	ICP-I	ICP-II	ICP-III	Average	STDEV
β-SiC _p	-				
2V/β-SiC _p	1.5	2.1	1.9	1.8	0.2
β-SiC _o	-				
1V/β-SiC _o	1.4	0.9	0.7	1.0	0.3
2V/β-SiC _o	1.3	2.1	2.5	2.0	0.5
4V/β-SiC _o	4.1	4.3	4.5	4.3	0.2
6V/β-SiC _o	6.1	6.3	5.4	5.9	0.4
8V/β-SiC _o	7.9	7.8	7.9	7.9	0.1
10V/β-SiC _o	9.6	9.8	10.1	9.8	0.2

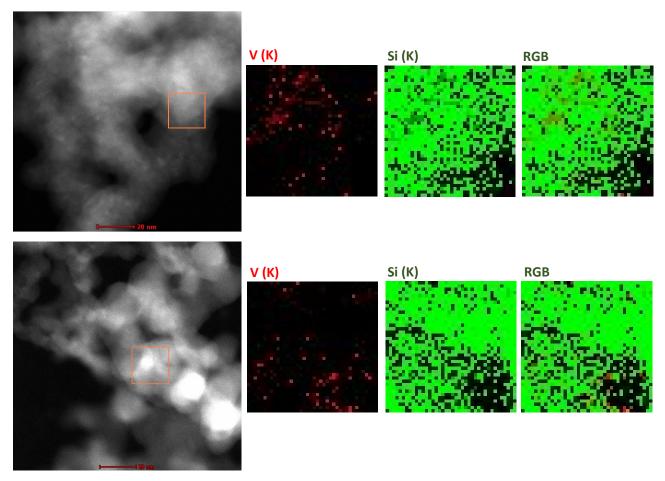
S.2) Turn over frequency (TOF) for propane consumption as a function of V coverage for the studied V/β -SiC_o catalysts at 490 C. $C_3H_8/O_2/N_2=6:3:11$ composition. The inverse weight hourly space velocity (WHSV⁻¹) was varied between 40-250 kg_{cat}.s/m³.

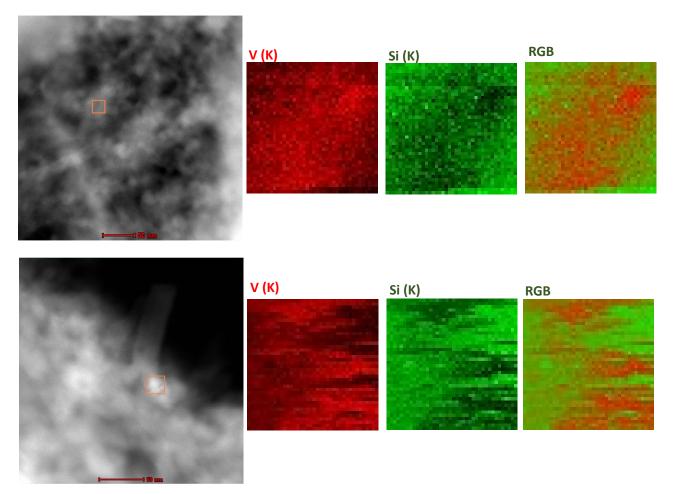


S.3) The used temperature program (top left), TGA-DSC data (top right), and the MS data for O_2 and CO_2 (bottom left). At around 400 $^{\circ}$ C under air, the formation of CO_2 begins and steadily increases. Once air is switched to N2, CO2 production stops. The increase in mass, despite of the formation of CO2, occurs basically because SiC + $2O_2$ -> SiO_2 + CO_2 . As the molar mass of SiC is lower than SiO_2 , this results in an increase in total mass.

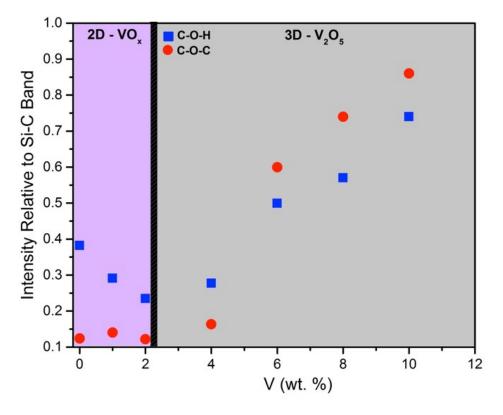


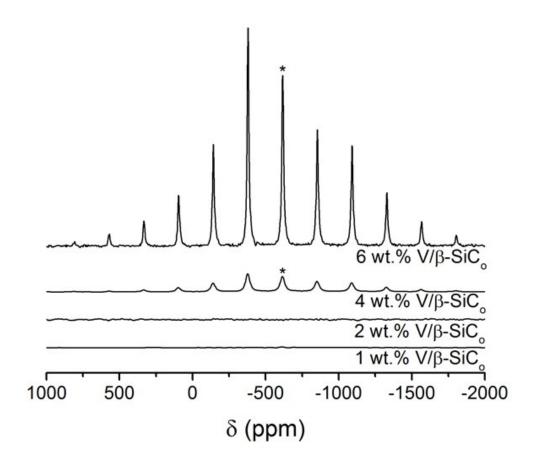
S.4) EDS Analysis for V/ β -SiC and V/SiO $_2$ samples. Whereas the formation of "V-islands" can be observed both at low (2.4 V $_{atoms}$ *nm $^{-2}$) and high (13.7 V $_{atoms}$ *nm $^{-2}$) V coverage on β -SiC, a more uniform V distribution is observed on V/SiO $_2$ samples with similar V coverage.


 $2V/\beta$ -SiC (θ = 2.4 $V_{atoms}*nm^{-2}$)


 $6V/\beta$ -SiC (θ = 13.7 V_{atoms}*nm⁻²)




 $2V/SiO_2(\theta = 1.3 V_{atoms}*nm^{-2})$


 $7V/SiO_2(\theta = 13.4 V_{atoms}*nm^{-2})$

S.6) 51 V MAS NMR spectra of dehydrated V/ β -SiC $_0$ materials containing 1, 2, 4, and 6 wt.% V, with signal intensity scaled to an equivalent number of scans. The 4 and 6 wt.% V/ β -SiC $_0$ exhibit a single isotropic shift (denoted by an asterisk, *) at -616 ppm, whereas no signal is observed in the spectra for 1 and 2 wt.% V.

