Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Bi metal modified Bi₄O₅I₂ hierarchical microsphere with oxygen vacancies for the improved photocatalytic performance and mechanism insights

Xiufan Liu, Xuyang Xiong, Shuoping Ding, Qingqing Jiang, Juncheng Hu*

Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry

of Education, South-Central University for Nationalities, Wuhan, 430074, P. R. China

* Corresponding author: jchu@mail.scuec.edu.cn

Fig. S1 Bismuth content in BOI, Bi/BOI-1, Bi/BOI-2, and Bi/BOI-3.

Fig. S2 (a) Low-magnification SEM image of Bi/BOI-2 sample, and magnified SEM image (inset). (b) Size distribution count of the Bi/BOI-2 sample.

Fig. S3 (a) Transformed Kubelka-Munk function versus light energy over BOI and Bi/BOI-2, (b) Mott-Schotty plots of BOI.

Fig. S4 UV-Vis adsorption spectra of (a) BPA and (b) MO during the degradation process with Bi/BOI-2.

Fig. S5 XRD patterns of Bi/BOI-2 after cycling and the corresponding SEM image (inset).

Samples	Solution	Light source	photocatalytic efficiency	Ref.
Bi ₅ O ₇ I	15 mg/L	400 W halogen	$T_{90\%} = 18 \text{ min}$	1
(50 mL)	50 ml	lamp with a 420		
		nm cut-off filter		
Bi ₁₂ O ₁₅ Cl ₆	10 mg/L	350 W Xe arc	$T_{90\%} = 6h$	2
(10 mg)	40 mL	lamp with a 420		
		nm cut-off filter		
Bi ₇ O ₉ I ₃	20 mg/L	1000 W Xe lamp	$T_{90\%} = 60 \text{ min}$	3
(50 mg)	50 mL	combined with a		
		420 nm cut-off		
		filter		
Bi/BiOI	20 mg/L	350 W Xe lamp	$T_{90\%} = 60 \min$	4
(5 mg)	10 ml	with light		
		intensity of		
		5.8 mW/cm^2		
g-C ₃ N ₄ /BiOI	20 mg/L	300 W Xe lamp	T _{90%} =60 min	5
(50 mg)	100 mL	with a 400 nm		
		cutoff filter		
$Bi_{12}O_{17}Cl_2$	10 mg/L	500 W Xe arc	T _{90%} =120 min	6
(20 mg)	40 mL	lamp with a		
		420 nm cut-off		
		filter		
BiOI/BiOCl	20 mg/L	1000 W Xe lamp	$T_{90\%} = 20 \min$	7
(50 mg)	50 mL	with a 420 nm		
	1.0 (7	cut-off filter		2
$B_1OBr/B_{12}O_{17}Cl$	10 mg/L	500 W Xe lamp	$T_{73\%} = 4h$	8
2	50 mL			
(30 mg)	10 /7	200 1111 11	T A	2
$CQD-B_{12}MoO_6$	10 mg/L	300 W Xe with a	$T_{88\%} = 2h$	9
100 mg	100 mL	400 nm cut-off		
	10 /	filter	T. 01	10
$B_1OI/B_{12}O_{17}CI_2$	10 mg/L	500 W Xe lamp	$1_{90\%} = 2h$	10
50 mg	50 mg	with 420 nm cut-		
		off filter		

Table S1 Phoyocatalytic efficiencies of Bisphenol-A over Bi-based photocatalysts under different conditions.

Reference

- 1 Y. B. Liu, G. Q. Zhu, J. Z. Gao, R. L. Zhu, M. Hojamberdiev, C. H. Wang, X. M. Wei, P. Liu, *Appl. Catal. B*, 2017, **205**, 421-432.
- 2 C. Y. Wang, X. Zhang, X. N. Song, W. K. Wang, H. Q. Yu, ACS Appl. Mater. Interfaces, 2016, 8, 5320-5326.
- 3 X. Xiao, R. Hao, X. X. Zuo, J. M. Nan, L. S. Li, W. D. Zhang, Chem. Eng. J., 2012, 209 293-

300

- 4 C. Chang, L. Y. Zhu, Y. Fu, X. L. Chu, Chem. Eng. J., 2013, 233, 305-314.
- 5 J. Di, J. X. Xia, S. Yin, H. Xu, Y. G. Xu, M. Q. He, H. M. Li, *J. Mater. Chem. A*, 2014, **2**, 5340-5351.
- 6 C. Y. Wang, X. Zhang, H. B. Qiu, W. K. Wang, G. X. Huang, J. Jiang, H. Q. Yu, *Appl. Catal.* B, 2017, 200, 659-665.
- 7 X. Xiao, R. Hao, M. Liang, X. X. Zuo, J. M. Nan, L. S. Li, W. D. Zhang, *J. hazard. mater.*, 2012, **233**, 122-130.
- 8 L. Hao, H. W. Huang, Y. X. Guo, X. Du, Y. H. Zhang, Appl. Sur. Sci., 420, 2017, 303-312.
- 9 J. Di, J. X. Xia, M. X. Ji, H. P. Li, H. Xu, H. M. Li, R. Chen, Nanoscale, 2015, 7, 11433-11443.
- 10 H. W. Huang, K. Xiao, Y. He, T. R. Zhang, F. Dong, X. Du, Y. H. Zhang, *Appl. Catal. B*, 2016, 199, 75-86.

Fig. R1 The standard curve of Abs vs. BPA concentration

Fig. R2 C_t/C_0 versus time curves of CR under visible light irradiation