## **Supporting Information**

### Two-dimensional graphene-directed formation of the cylindrical iron nanocapsules for Fischer-Tropsch synthesis

Feng Jiang, Bing Liu, Weiping Li, Min Zhang, Zaijun Li, and Xiaohao Liu\*

Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China E-mail: <u>liuxh@jiangnan.edu.cn</u> (X.H. Liu)

#### **Contents:**

| Supplementary Figures S1-S15 | 2-9 |
|------------------------------|-----|
| Supplementary Tables S1-S4   | 10  |
| References                   | 10  |

# **Supplementary Figures and Tables**



**Fig. S1.** Top views of (a)  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> (510) and (b)  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> (-202) surfaces, and side views of (c)  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> (510) and (d)  $\chi$ -Fe<sub>5</sub>C<sub>2</sub> (-202) surfaces (blue: Fe atoms; grey: C atoms).



**Fig. S2.** The product distribution obtained over GO modified  $Fe_2O_3$  catalysts after 50 h reaction. The selectivities to higher olefins (total olefins) for Fe@GO-0.1 and Fe@GO-0.25 catalysts are 24.5% (54.4%), and 29.5% (60.7%), respectively. Reaction conditions: catalyst = 0.1 g, H<sub>2</sub>/CO = 1.0, GHSV = 22.2 L g<sub>cat</sub><sup>-1</sup>h<sup>-1</sup>, 340 °C, 1.0 MPa, 50 h.



Fig. S3. The XPS spectra of fresh GO and Fe@GO catalysts: a) the full spectra, b) the S 2p spectra.



**Fig. S4.** (a) SEM image of  $Fe_2O_3$  NPs, (b) TEM image of GO, and (c) original STEM image of  $Fe_2O_3$  NPs and corresponding STEM-EDX elemental mapping of Fe and O on the  $Fe_2O_3$  NPs.



Fig. S5. (a) Raman spectra of GO and GO modified  $Fe_2O_3$  catalysts; (b) FTIR spectra of GO and GO modified  $Fe_2O_3$  catalysts.

Raman spectra of GO and Fe@GO catalysts exhibit two distinct peaks due to the D and G bands at around 1325 and 1585 cm<sup>-1</sup>, respectively.<sup>1</sup> The D band is attributed to an  $A_{1g}$  vibration mode of carbon atoms with a double-resonance process in plane terminations of disordered graphite. The G band arises from the  $E_{2g}$  mode of graphitic carbon and is assigned to the vibration of sp<sup>2</sup> hybridized carbon atoms in the graphite layer. The relative integrated intensity of these two bands ( $I_D/I_G$ ) is usually employed as a measure of the disorder in carbon materials.<sup>2</sup> In our study, the  $I_D/I_G$  ratio of GO is 1.16 while no significant change in the ratio can be observed over the Fe@GO catalysts, and also no discernible Raman shift for these bands, indicating the similar nature of GO in these catalysts. The FTIR spectra of GO and Fe@GO catalysts show the vibrations of other groups including C=O, C=C, C-O-C and C-O with wavenumber ranging from 1750 to 800 cm<sup>-1</sup>.<sup>3</sup> As expected, there is negligible change in the peak intensity and peak position over the Fe@GO catalysts. In summary, the nature of GO in the Fe@GO catalysts is similar as the fresh GO.



Fig. S6. TEM images of the reduced Fe<sub>2</sub>O<sub>3</sub> and Fe@GO-0.25 catalysts.



**Fig. S7.** TEM images of catalyst after reaction for 50 h. (a) Fe<sub>2</sub>O<sub>3</sub> NPs (300 °C), (b) Fe<sub>2</sub>O<sub>3</sub> NPs (340 °C), (c) Fe@PAA-0.25 (340 °C), (d) Fe@PVP-0.25 (340 °C). Reaction conditions: catalyst = 0.1 g, H<sub>2</sub>/CO = 1.0, GHSV = 22.2 L g<sub>cat</sub><sup>-1</sup>h<sup>-1</sup>, 1.0 MPa.



Fig. S8. XRD patterns of spent  $Fe_2O_3$  and Fe@GO catalysts.



Fig. S9. TEM image of Fe@GO-0.5 catalyst after 50 h reaction.



Fig. S10. The XPS spectra of spent  $Fe_2O_3$  and Fe@GO catalysts: a) survey spectra, b) C 1s spectra.



**Fig. S11.** TEM image of spent Fe<sub>2</sub>O<sub>3</sub> (340 °C) catalyst. Reaction conditions: catalyst = 0.1 g, H<sub>2</sub>/CO = 1.0, GHSV = 22.2 L  $g_{cat}^{-1}h^{-1}$ , 1.0 MPa.



**Fig. S12.** Time on steam evolution of methane selectivity over unmodified and modified  $Fe_2O_3$  catalysts. (a)  $Fe_2O_3$  NPs (340 °C), (b) Fe@PAA-0.25 (340 °C), (c) Fe@PVP-0.25 (340 °C), (d)  $Fe_2O_3$  NPs (300 °C) and (e) Fe@GO-0.25 (340 °C). Reaction conditions: catalyst = 0.1 g, H<sub>2</sub>/CO = 1.0, GHSV = 22.2 L g<sub>cat</sub><sup>-1</sup>h<sup>-1</sup>, 1.0 MPa.



**Fig. S13**. Catalytic performance of different carbon material supported and sulfur promoted catalysts. (a-c) Time on stream evolution of CO conversion, methane selectivity and lower olefins selectivity over AC and CNF supported iron catalysts.



Fig. S14. HRTEM images of spent (a-c) 10Fe/AC and (d-f) 10Fe/CNF catalysts.



Fig. S15. ASF plots of FT products obtained over the AC and CNF supported iron catalysts.

Table S1. Elemental analysis of different carbon materials

| Carbon sources | C, wt% | H, wt% | N, wt% | S, wt% |
|----------------|--------|--------|--------|--------|
| GO (fresh)     | 49.2   | 2.7    | 0      | 1.0    |
| GO (treated)   | 49.0   | 2.5    | 0      | 0.4    |
| PAA            | 49.8   | 6.6    | 0      | 0      |
| PVP            | 60.1   | 8.9    | 11.7   | 0      |

**Table S2.** Comparision of the calculated lattice parameters and the average magnetic moment per iron atom obtained in this work with previous theoretical values

| Method  | a(Å)   | b(Å)  | c(Å)  | β(deg) | Magnetic moment( $\mu_B$ ) | ref       |
|---------|--------|-------|-------|--------|----------------------------|-----------|
| PAW-PBE | 11.580 | 4.508 | 4.994 | 96.64  | 1.73                       | 4         |
| PAW-PBE | 11.554 | 4.502 | 4.985 | 97.62  | 1.73                       | 5         |
| PAW-PBE | 11.545 | 4.496 | 4.982 | 97.60  | 1.73                       | 6         |
| PAW-PBE | 11.527 | 4.504 | 4.987 | 97.68  | 1.735                      | This work |

Table S3. Elemental analysis of different fresh samples by XPS

|              | Fe <sub>2</sub> O <sub>3</sub> | GO    | Fe@GO-0.25 | Fe@GO-0.5 |
|--------------|--------------------------------|-------|------------|-----------|
| Fe, atomic % | 10.47                          | 0     | 20.04      | 12.37     |
| C, atomic %  | 59.03                          | 65.83 | 36.83      | 44.67     |
| O, atomic %  | 30.51                          | 32.01 | 43.14      | 42.08     |
| K, atomic %  | 0                              | 1.54  | 0          | 0.52      |
| S, atomic %  | 0                              | 0.62  | 0          | 0.36      |
| Mn, atomic % | 0                              | 0     | 0          | 0         |

Table S4. Elemental analysis of different spent samples by XPS

|              | Fe <sub>2</sub> O <sub>3</sub> | Fe@GO-0.25 | Fe@GO-0.5 |
|--------------|--------------------------------|------------|-----------|
| Fe, atomic % | 2.46                           | 2.36       | 1.70      |
| C, atomic %  | 80.76                          | 84.4       | 81.52     |
| O, atomic %  | 16.78                          | 13.24      | 16.78     |
| K, atomic %  | 0                              | 0          | 0         |
| S, atomic %  | 0                              | 0          | 0         |
| Mn, atomic % | 0                              | 0          | 0         |

#### References

- 1 B.F. Machado and P. Serp, Catal. Sci. Technol., 2012, 2, 54-75.
- 2 H. Wang, J.T. Robinson, X. Li and H. Dai, J. Am. Chem. Soc., 2009, 131, 9910-9911.
- 3 M. Acik, G. Lee, C. Mattevi, A. Pirkle, R.M. Wallace, M. Chhowalla, K. Cho and Y. Chabal, *J. Phys. Chem. C*, 2011, **115**, 19761-19781.
- 4 D.C. Sorescu, J. Phys. Chem. C, 2009, 113, 9256-9274.
- 5 T.H. Pham, X.Z. Duan, G. Qian, X.G. Zhou and D. Chen, J. Phys. Chem. C, 2014, 118, 10170-10176.
- 6 S. Zhao, X.W. Liu, C.F. Huo, Y.W. Li, J.G. Wang and H.J. Jiao, J. Catal., 2012, 294, 47-53.