Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2017

Supplementary material

Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming

Yajie Liu^{a,c}, Shaojun Qing^a, Xiaoning Hou^a, Fajie Qin^{a,c}, Xiang Wang^b, Zhixian Gao^{a*}, Hongwei Xiang^a

^a Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China E-mail: gaozx@sxicc.ac.cn

^b Institute of Applied Chemistry, College of Chemistry, Nanchang University, Nanchang 330031, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

Fig. S1. Crystallite size of CuO and of spinel phase as a function of calcination temperature for CA*T* samples. (Average crystallite diameter of spinels, which were calculated by means of the Scherrer equation applied to the six main diffraction peaks, showing a nearly linear increase from 8.7 to 34.5 nm between 900-1200 °C. The size of CuO decreases from 800 to 900 °C, and the CuO phase disappears from XRD patterns at 950 °C and above)

Fig. S2. XRD patterns of pseudo-boehmite (pb) and its heated products. (pb600(3) represented that pseudo-boehmite was calcined from *RT* to 600 $^{\circ}$ C and kept for 3h, and pb1200 indicated pseudo-boehmite was calcined from *RT* to 1200 $^{\circ}$ C and cooled down naturally.)

Fig. S3. H₂-TPR profiles of CA950 and treated ones under different conditions for the purpose of identifying the possible formation of CuAlO₂ phase as an intermediate during spinel reduction. (CA950 represented non-treated CA950 reduced from *RT* to 900 °C. [*RT*-350]-CA950 represented that CA950 was reduced from *RT* to 350 °C followed by a formal TPR from *RT* to 900 °C, and similarly [*RT*-500]-CA950 indicated the pre-reduction was performed from *RT* to 500 °C. The obtained profiles show nearly the identical γ -peak, suggesting γ -peak is not a secondary reduction of an intermediate, which is supported by XRD data as shown in Fig. S4)

Fig. S4. XRD patterns of CA950 and [*RT*-500]-CA950, indicating the absence of CuAlO₂ phase in Cu-Al spinel solid solution.

Fig. S5. H_2 -TPR profiles of CA950 and CA950-ox, indicating the absence of CuAlO₂ phase in Cu-Al spinel solid solution. (CA950-ox represented that CA950 was oxidized in 80% O_2/N_2 , the oxidation temperature condition was same as calcination of CA950 in air)

Fig. S6. XRD patterns of tested Cu-Al spinel catalysts (**a**) and details of 311 plane of Cu-Al defect spinel (**b**). (The CA950 generates the smallest copper particles (6.6 nm) after MSR test. The 2theta values of CA900-t, CA950-t and CA1000-t almost peak at the same position with broadened peak width but higher values with narrowed peak width for CA1100-t and CA1200-t. This indicates that the content of remaining Cu in spinel structure after MSR is higher for low temperature calcined samples)

Fig. S7. XRD patterns of reduced Cu-Al spinel catalysts and copper particle size in nm calculated by the Scherrer equation. (CA*T*-H represented that the sample CA*T* was reduced in H₂ from *RT* to 500 $^{\circ}$ C and kept for 20 min. The CA950-t produces the smallest copper particles (7.8 nm) after reduction treatment.)

Fig. S8. Comparison of CH_3OH conversion rate in MSR over CAT catalysts that contained nearly the same content of Cu-Al spinel. (As CA900(3) owns the same spinel content and similar reducibility with CA950, but a lower catalytic activity. Thus, it can be concluded that a large surface area may also contribute to the catalytic action.)

Table S1. Comparison of the conversion rate (r_1) and mutually (r_2)							
TOF	CA800	CA900	CA950	CA1000	CA1100	CA1200	CA900(3)
$r_1 [\mathrm{mol}_{\mathrm{CH3OH}} \mathrm{mol}$ -1 Cu h ⁻¹]	3.08	4.47	6.53	5.85	5.55	5.39	5.87
$r_2 \times 10^3$ [mol _{CH3OH} m-2 NPs	7.10	5.56	4.60	4.45	5.99	7.08	5.32
h-1]							

Table S1. Comparison of the conversion rate (r_1) and intrinsic activity (r_2)